Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để hàm s[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m < C m > D m ≤ −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 D |→ A |→ B |→ C |→ Rm dx theo m? + 3x + m+2 m+2 2m + m+1 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+1 m+2 m+2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; 5; 0) D (0; −5; 0) Câu Cho số thực dươngm Tính I = x2 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 π π x π F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = + D F( ) = − 4 4 4 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = (−∞; 2) √ ′ Câu Cho lăng trụ ABC.A′ B′C ′ có đáy a, AA = 3a Thể tích khối √ lăng trụ cho là: √ 3 D 3a3 A a B 3a C 3a Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D √ x Câu 10 Tìm nghiệm phương trình x = ( 3) A x = B x = −1 C x = D x = Câu 11 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m > C m ≥ D m ≥ Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = −2 D yCD = 52 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m , −1 C m , D m = a Câu 14 Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 600 B 300 C 450 D 1350 Trang 1/5 Mã đề 001 Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D m < A Không tồn m B < m < 3 Câu 16 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A < m < B −2 ≤ m ≤ C m = D −2 < m < Câu 17 Hàm số sau đồng biến R? A y = x√2 √ C y = x2 + x + − x2 − x + B y = tan x D y = x4 + 3x2 + Câu 18 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A 3π C 3π B √ D 3 Rm dx theo m? Câu 19 Cho số thực dươngm Tính I = x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+1 m+2 R1 √3 Câu 20 Tính I = 7x + 1dx 21 60 20 45 B I = C I = D I = A I = 28 28 Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; −1; 2) B (2; −1; −2) C (2; −1; 2) D (−2; 1; 2) Câu 22 √ Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng B 2πRl C πRl D 2π l2 − R2 A π l2 − R2 x π π π Câu 23 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu 24 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) D C(20; 15; 7) Câu 25 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C −1 < m < D m ∈ (0; 2) 1 Câu 26 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x 2loga x loga x 3loga x Câu 27 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu Trang 2/5 Mã đề 001 2a2 b A √ 3π 4a2 b B √ 2π 2a2 b 4a2 b C √ D √ 3π 2π 2x − đạt giá trị lớn đoạn [1; 3] Câu 28 Với giá trị tham số m hàm số y = x + m2 : √ A m = ±2 B m = ±3 C m = ±1 D m = ± 3x − Câu 29 Tập nghiệm bất phương trình log4 (3 x − 1).log ≤ là: 16 4 A S = (1; 2) B S = [1; 2] C S = (0; 1] ∪ [2; +∞) D S = (−∞; 1] ∪ [2; +∞) Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 31 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 32 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 A V = a B V = πa C V = D V = πa 6 Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ A (x − 1)2 + (y + 1)2 + (z + 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 34 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D 4 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D Câu 36 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ B 4a3 C 3a3 D 9a3 A 6a3 r 3x + Câu 37 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (−1; 4) ———————————————– C D = (1; +∞) D D = (−∞; −1] ∪ (1; +∞) Câu 38 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = 14 D R = Câu 39 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 2abc D P = 26abc Trang 3/5 Mã đề 001 Câu 40 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 C R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − D R3 R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Câu 41 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + D log2 2250 = C log2 2250 = n n Câu 42 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = x3 − 3x2 C y = −2x4 + 4x2 D y = −x4 + 2x2 Câu 43 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (1; 5) D (−3; 0) Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 6a3 B 3a3 C 9a3 D 4a3 Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D 3x cắt đường thẳng y = x + m Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = −2 D m = Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 29 23 A B C D 4 4 Câu 49 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = ln a C P = 2loga e D P = Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001