Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m để đường[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B m < C −4 < m < + 2x x+1 D ∀m ∈ R Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(6; 21; 21) D C(20; 15; 7) A C(6; −17; 21) B C(8; ; 19) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = D R = 29 Câu R5 Công thức sai? A e x = e x + C R C cos x = sin x + C Câu Tính I = R1 √3 R B a x = a x ln a + C R D sin x = − cos x + C 7x + 1dx A I = 60 28 B I = 21 C I = 20 D I = 45 28 đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = tan x B y = x4 + 3x2 + D y = x2 Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 Câu 10 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A − B C D 6 √ x Câu 11 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 Trang 1/5 Mã đề 001 Câu 12 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 13 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh√huyền 2a Tính thể √ tích3 khối nón π 2.a 2π.a3 π.a3 4π 2.a B C D A 3 3 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , −1 B m , C m , D m = Câu 15 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 D < m < A m < B Không tồn m C m < 3 R Câu R16 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu 17 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu 18 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = −x4 + 3x2 − C y = x2 − 2x + D y = x3 Câu 19 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 12 (m) B S = 20 (m) C S = 28 (m) D S = 24 (m) Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 1; 0) D (0; 5; 0) √ x Câu 21 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H2) B (H4) C (H3) D (H1) Câu 22 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 600 B 300 C 450 D 360 Câu 23 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu 24 Hàm số sau khơng có cực trị? A y = x2 B y = x4 + 3x2 + C y = x3 − 6x2 + 12x − D y = cos x Câu 25 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = C m = 13 D m = −2 Câu 26 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x D y′ = x −3x ln Trang 2/5 Mã đề 001 Câu 27 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga = a loga a = B loga xn = log x , (x > 0, n , 0) an D loga (xy) = loga x.loga y C loga x có nghĩa với ∀x ∈ R Câu 28 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5 5 5π 20 5πa3 A V = πa B V = πa C V = a D V = 6 Câu 29 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vng √ 3a 10 C 3a D 6a A 3a B Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; −2; −3) C (−1; 1; 1) D (1; 1; 3) Câu 31 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D −6 A B C Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x − 1)2 + (y + 1)2 + (z + 2)2 = Câu 33 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 46.538667 đồng C 43.091.358 đồng D 48.621.980 đồng Câu 34 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C D −4 Câu 35 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 Câu 36 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 250π 400π 125π 500π A B C D 9 √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ 2 (x − 1)log4 e 2(x − 1) ln (x − 1) ln x − ln Câu 38 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = x4 + 3x2 4x + C y = D y = −x3 − x2 − 5x x+2 √ Câu 39 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình với x ∈ [ 1; 3] Trang 3/5 Mã đề 001 C Bất phương trình vơ nghiệm D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 40 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 6a3 C 3a3 D 9a3 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 42 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 44 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m > A m > m < − B m < −2 Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−1; 1) D (−3; 0) Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 |x2 − 2x|dx = (x2 − 2x)dx + 1 R2 R3 (x2 − 2x)dx R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx (x2 − 2x)dx Câu 48 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + n + B log2 2250 = A log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = m n −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (3; 14; 16) A u + v = (1; 14; 15) B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Trang 4/5 Mã đề 001 Câu 50 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001