Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đồ thị hàm số nào sau đây nhận trục tung là t[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x3 − 2x2 + 3x + D y = x2 − 2x + Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = (−∞; 2) √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành? π 10π A V = B V = C V = D V = π 3 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 2a 3a 5a A B C √ D √ 5 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B log x > log y C ln x > ln y a D loga x > loga y a ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu Cho hàm số y = cx + d A bc > B ac < C ab < D ad > Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + ty = + 2tz = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) A [ ; 2] [22; +∞) 4 Câu 10 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 11 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 Câu 12 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − 12 m2 − 12 m2 − A B C D 2m 2m m 2m Trang 1/5 Mã đề 001 Câu 13 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = Câu 14 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 15 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C 4π D π x−1 y+2 z Câu 16 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y − 2z = D (P) : x − y + 2z = √ x Câu 17 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H1) B (H2) C (H4) D (H3) Câu 18 Cho a > 1; < x < y Bất đẳng thức sau đúng? B loga x > loga y C log x > log y A log x > log y a D ln x > ln y a p Câu 19 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < y < −3 B Nếux > thìy < −15 C Nếux = y = −3 D Nếu < x < π y > − 4π2 Câu 20 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R D Hàm số nghịch biến R Câu 21 Kết đúng? R A sin2 x cos x = cos2 x sin x + C R C sin2 x cos x = −cos2 x sin x + C Câu R22 Công thức sai? A R a x = a x ln a + C C e x = e x + C sin3 x B sin x cos x = − + C 3 R sin x D sin2 x cos x = + C R R B R cos x = sin x + C D sin x = − cos x + C Câu 23 Cho < a , 1; < x , Đẳng thức sau sai? B aloga x = x A loga2 x = loga x C loga (x − 2)2 = 2loga (x − 2) D loga x2 = 2loga x √ Câu 24 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành 10π π A V = B V = C V = π D V = 3 m R dx Câu 25 Cho số thực dươngm Tính I = theo m? x + 3x + m+2 2m + m+2 m+1 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+1 m+2 2m + m+2 Trang 2/5 Mã đề 001 √ x− x+2 có tất tiệm cận? Câu 26 Đồ thị hàm số y = x2 − A B C D Câu 27 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (1; −2; 7) C (4; −6; 8) D (−2; 2; 6) Câu 28 Tứ diện OABC có OA = OB = OC = a đôi vuông góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 Câu 29 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b B √ A √ C √ D √ 3π 3π 2π 2π √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B C − D 3 3x − x Câu 31 Tập nghiệm bất phương trình log4 (3 − 1).log ≤ là: 16 4 A S = (1; 2) B S = (−∞; 1] ∪ [2; +∞) C S = [1; 2] D S = (0; 1] ∪ [2; +∞) Câu 32 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 3a 13 3a 13 a B C D A 20 26 13 Câu 33 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ π− 2π − 3 2π − A B C D 12 12 Câu 34 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 d Câu 35 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ A a B a C a D 2a Câu 36 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m > m < − D m < −2 Trang 3/5 Mã đề 001 Câu 37 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a 3a 30 a 15 3a B C D A 10 Câu 38 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π B C 6π D A 5 Câu 39 Chọn mệnh đề mệnh đề sau: R R e2x + C B sin xdx = cos x + C A e2x dx = R R (2x + 1)3 C (2x + 1)2 dx = +C D x dx =5 x + C a b c Câu 40 Cho P = , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 2abc D P = 26abc Câu 41 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B −4 ≤ m ≤ −1 C m < D m > −2 Câu 42 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 400π 500π 125π 250π B C D A 9 Câu 43 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 14 B R = 15 C R = D R = d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C √ = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A 2a B a C a D a Câu 45 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = m = −10 D m = Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 47 Cho biểu thức P = (ln a + loga e) + ln a − (loga e) , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = D P = 2loga e 2 Câu 48 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa2 15 πa 17 B C D A Câu 49 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π A B 6π C D 5 Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −2 D −4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001