LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1 = 0 và mặ[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 m2 − 4m2 − m2 − 12 A B C D 2m 2m 2m m √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln − C ln + D − ln − A − ln 2 2 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C [ ; 2] [22; +∞) D ( ; 2] [22; +∞) A ( ; +∞) 4 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C < m < D m < 3 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C sin 3x + C D −3 sin 3x + C 3 x+1 Câu Đồ thị hàm số y = (C) có đường tiệm cận x−2 A y = x = −1 B y = x = C y = x = D y = −1 x = x+1 y z−2 Câu 10 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : = = Viết 1 phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : y − z + = B (P) : x − 2z + = C (P) : x − 2y + = D (P) : y + z − = Câu 11 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = −x4 + 2x2 + C y = x3 − 3x2 + D y = x4 − 2x2 + Câu 12 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(−1; 2; −3); R = B I(1; −2; 3); R = C I(1; 2; −3); R = D I(1; 2; 3); R = Trang 1/5 Mã đề 001 Câu 13 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 C V = 2a3 D V = 3a3 A V = a3 B V = Câu 14 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A −4 ≤ m < −3 B −4 < m ≤ −3 C −4 < m < −3 D m > −4 Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A −x + 2y + 2z + = B x + 2y + 2z + = C 3x − 4y + 6z + 34 = D x − 2y − 2z − = Câu 16 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B −16 C D 16 Câu 17 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C 83 D Câu 18 Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln 6a2 C ln 23 i R2 R2h Câu 19 Nếu f (x)dx = 21 f (x) − dx A B −2 C D Câu 20 Phần ảo số phức z = − 3i A B −2 D −3 A ln 32 C Câu 21 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: B y′ = x ln1 C y′ = − x ln1 A y′ = 1x D ln a D y′ = ln x Câu 22 Tích tất nghiệm phương trình ln2 x + ln x − = A −3 B e13 C e12 D −2 Câu 23 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = D d = R Câu 24 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: B y′ = πxπ−1 C y′ = xπ−1 A y′ = π1 xπ−1 D y′ = πxπ Câu 25 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 210 C 225 D 105 R2 R2 Câu 26 Nếu f (x) = [ f (x) − 2] A B C D −2 Câu 27 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 2 3 A 2a B a C a D a 3 Câu 28 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16 16π 16π A B C D 15 15 Trang 2/5 Mã đề 001 Câu 29 Tập nghiệm bất phương trình x+1 < A (1; +∞) B [1; +∞) C (−∞; 1) D (−∞; 1] Câu 30 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 45◦ B 60◦ C 30◦ D 90◦ Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 C y = x4 − 3x2 + D y = x2 − 4x + A y = x3 − 3x − B y = x−1 800π Câu 32 Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 33 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d > R D d = Câu 34 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 A √ B √ C √ D 13 Câu 35 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A (x − 1)2 + (y − 4)2 = 125 B x = C (x − 5)2 + (y − 4)2 = 125 D (x + 1)2 + (y − 2)2 = 125 −2 − 3i z + = Câu 36 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện √ − 2i A max |z| = B max |z| = C max |z| = D max |z| = 1+i Câu 37 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = z mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 15 25 25 15 B S = C S = D S = A S = 4 2 Câu 38 Gọi z1 z2 nghiệm phương trình z − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức w √= x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 1√+ 27 hoặcw = √ − 27 B w = + 27i hoặcw = − √ √ 27i C w = 27 − i hoặcw = 27 + i D w = − 27 − i hoặcw = − 27 + i Câu 39 (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = Tìm giá trị lớn biểu thức T = |z + 1| √ + 2|z − 1| √ √ √ A max T = B max T = C max T = 10 D max T = Câu 40 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x − y + = B x + y − = C x + y − = D x − y + = √ Câu 41 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| < B < |z| < C ≤ |z| ≤ D |z| > 2 2 Trang 3/5 Mã đề 001 Câu 42 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 3π B 4π C 2π D π Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C 12 D x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 44 Tìm tất giá trị tham số m để hàm số y = A m = −1 B Khơng có m Câu 45 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 46 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) C 2→ −u + 3→ −v = (1; 13; 16) D 2→ Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080251 đồng B 36080255 đồng D 36080253 đồng Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 50 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = 14 D R = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001