LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số nghịch bi[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x + 3x − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−3; 1) R Câu Tính nguyên hàm cos 3xdx 1 C sin 3x + C D sin 3x + C A −3 sin 3x + C B − sin 3x + C 3 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B ln + C − ln − D − ln A ln − 2 2 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh√CC1 , BB1 Tính khoảng cách từ điểm I đến mặt phẳng √ √ a a a 15 A B C a 15 D Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 2 (m ) B 3(m ) (m ) D (m2 ) A C Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích khối nón √ √ 4π 2.a 2π.a3 π 2.a3 π.a3 A B C D 3 3 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 D yCD = Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C m < D Không tồn m A m < B < m < 3 Câu Cho số phức z = (1 + i)2 (1 + 2i) Số phức z có phần ảo A B −4 C D 2i Câu 10 Tập nghiệm bất phương trình log3 (10 − x+1 ) ≥ − x chứa số nguyên A B Vô số C D Câu 11 Cho hình phẳng D giới hạn đường y = (x − 2)2 , y = 0, x = 0, x = Khối tròn xoay tạo thành quay D quạnh trục hồnh tích V bao nhiêu? 32π 32 32 A V = B V = 32π C V = D V = 5 5π Câu 12 Đường cong hình bên đồ thị hàm số đây? A y = −x3 + 3x2 + B y = −x4 + 2x2 + C y = x3 − 3x2 + D y = x4 − 2x2 + Câu 13 Số phức z = − 3i có phần ảo A 3i B C D −3 Trang 1/5 Mã đề 001 Câu 14 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m < −1 C m > D −1 ≤ m < Câu 15 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (1; +∞) B (0; 1) C (−1; 0) D (−∞; 1) Câu 16 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A B C D −16 16 Câu 17 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (−1; 2) D (1; 0) Câu 18 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx C 23 D A B 34 Câu 19 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 60◦ B 90◦ C 30◦ D 45◦ Câu 20 Trong không gian Oxyz, cho đường thẳng d : x−1 = y−2 = z+3 Điểm thuộc d? −1 −2 A M(2; −1; −2) B P(1; 2; 3) C N(2; 1; 2) D Q(1; 2; −3) R Câu 21 Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = 1x B F ′ (x) = x22 C F ′ (x) = − x12 D F ′ (x) = ln x Câu R22 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? A f (x)dx = sin x + x2 + C B f (x)dx = − sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu 23 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C D −1 Câu 24 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (−6; 7) C (7; 6) D (6; 7) Câu 25 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (−∞; 3) C (2; 3) D (12; +∞) Câu 26 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 45◦ C 90◦ D 60◦ Câu 27 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d > R D d = x−2 y−1 z−1 Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 29 Có giá trị nguyên tham số m để hàm số y = −x + 6x2 + mx có ba điểm cực trị? A 15 B C 17 D Trang 2/5 Mã đề 001 Câu 30 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 31 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (3; +∞) D (−∞; 1) Câu 32 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 33 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = − B y′ = C y′ = D y′ = xln3 x x xln3 Câu 34 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = √ 27 − i hoặcw = 27√+ i B w = + √27 hoặcw = − √27 D w = + 27i hoặcw = − 27i C w = − 27 − i hoặcw = − 27 + i z+i+1 số ảo? Câu 35 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một Elip B Một đường thẳng C Một Parabol D Một đường tròn Câu 36 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 20 B r = 22 C r = D r = Câu 37 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C D 10 Câu 38 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi độ dài MN √ √ D MN = A MN = B MN = C MN = Câu 39 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 Câu 40 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x + y − = D x − y + = z Câu 41 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu w số ảo mệnh đề sau đúng? A Tam giác OAB tam giác B Tam giác OAB tam giác cân C Tam giác OAB tam giác nhọn D Tam giác OAB tam giác vuông Câu 42 Cho số phức z thỏa mãn (z + 1) (z − 2i) số ảo Tập hợp điểm biểu diễn số phức z hình trịn có diện tích 5π 5π B 25π C D 5π A 3x Câu 43 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = −2 B m = C m = D Không tồn m Trang 3/5 Mã đề 001 Câu 44 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 3a 30 a 15 B C D A 10 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 3a3 B 4a3 C 6a3 D 9a3 Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 6π D 12π Câu 49 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 50 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001