LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm giá trị cực đại yCD của hàm số y = x3 − 12x + 20 A yCD = 4 B yCD = −2 C yCD =[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = B yCD = −2 C yCD = 52 D yCD = 36 √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 C (0; 1) D ( ; +∞) A (1; +∞) B (0; ) 4 Câu Đạo hàm hàm số y = log √2 3x − là: 2 A y′ = C y′ = D y′ = B y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (1; +∞) D Hàm số nghịch biến khoảng (−∞; −3) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 1200 D 600 Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 C < m < D m < A Không tồn m B m < 3 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C Câu Cho hình phẳng (H) giới hạn đồ thị hàm số y = x2 đường thẳng y = mx với m , Hỏi có số ngun dương m để diện tích hình phẳng (H) số nhỏ 20 A B C D Câu 10 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 A V = a3 B V = 3a3 C V = 2a3 D V = ′ ′ ′ Câu 11 Cho lăng trụ đứng ABC.A B C có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 A V = B V = C V = a3 D V = 3a3 3 Câu 12 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−5; −2) B M(5; −2) C M(−2; 5) D M(5; 2) Câu 13 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; 2; −3); R = B I(−1; 2; −3); R = C I(1; −2; 3); R = D I(1; 2; 3); R = Trang 1/5 Mã đề 001 Câu 14 Tìm nguyên hàm hàm số f (x) = cos 3x R R sin 3x A cos 3xdx = sin 3x + C B cos 3xdx = − + C R R sin 3x + C C cos 3xdx = sin 3x + C D cos 3xdx = Câu 15 Cho cấp số nhân (un ) với u1 = − ; u7 = −32 Tìm q? A q = ±4 B q = ±1 C q = ±2 D q = ± 2 Câu 16 Cho số phức z = (1 + i) (1 + 2i) Số phức z có phần ảo A B −4 C D 2i Câu 17 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (1; 2) C (2; +∞) D (−∞; 1) Câu R18 Cho hàm số f (x) = cos x + x Khẳng định nàoR đúng? B f (x)dx = − sin x + x2 + C A f (x)dx = sin x + x2 + C R R C f (x)dx = − sin x + x2 + C D f (x)dx = sin x + x2 + C Câu 19 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln 23 B ln 23 C ln 6a2 Câu 20 Tập nghiệm bất phương trình log(x − 2) > A (12; +∞) B (3; +∞) C (2; 3) i R2 R h1 Câu 21 Nếu f (x)dx = f (x) − dx A −2 B C D ln a D (−∞; 3) D Câu 22 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A B 32 C 43 D Câu 23 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (3; 4) B (6; 7) C (2; 3) D (4; 5) R4 R4 R4 Câu 24 Nếu −1 f (x)dx = −1 g(x)dx = −1 [ f (x) + g(x)]dx A B −1 C D Câu 25 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị nguyên tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D R4 R4 R4 Câu 26 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D Câu 27 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 105 C 225 D 30 ax + b có đồ thị đường cong hình bên Câu 28 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (0; −2) B (−2; 0) C (2; 0) D (0; 2) Câu 29 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (0; 2) C (3; +∞) D (−∞; 1) Trang 2/5 Mã đề 001 Câu 30 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 49 B 48 C 89 D 90 Câu 31 Có số nguyên x thỏa mãn log3 A 92 B 193 x2 − 16 x2 − 16 < log7 ? 343 27 C 184 D 186 Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 A y′ = B y′ = C y′ = − x xln3 xln3 D y′ = ln3 x Câu 33 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −3 C −2 D Câu 34 Giả sử (H) tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z| Diện tích hình phẳng (H) A 4π B 2π C 3π D π Câu 35 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = B r = 22 C r = D r = 20 Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ C P = D P = A P = B P = 2 z+i+1 Câu 37 Tìm tập hợp điểm M biểu diễn số phức z cho w = số ảo? z + z + 2i A Một đường thẳng B Một đường tròn C Một Parabol D Một Elip Câu 38 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = Câu 39 Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| đường thẳng d : x+ay+b = Tính giá trị biểu thức a + b A B C D −1 −2 − 3i Câu 40 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ A max |z| = B max |z| = C max |z| = D max |z| = Câu 41 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B √ C D √ 13 Câu 42 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 mặt phẳng phức Khi đó√ độ dài MN √ A MN = B MN = C MN = D MN = Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Trang 3/5 Mã đề 001 Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng C 36080253 đồng B 36080254 đồng D 36080255 đồng Câu 45 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 6π C 12π D 10π Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −4 B C −2 D √ 2x − x2 + Câu 47 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 48 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (−1; 1) D (3; 5) Câu 49 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 50 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = x3 + 3x2 + 6x − C y = −x3 − x2 − 5x D y = 4x + x+2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001