LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A − 1 3 sin 3x +C B −3 sin 3x +C C 3 sin 3x +C D 1 3 s[.]
LATEX ĐỀ THI THAM KHẢO MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 R Câu Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B −3 sin 3x + C C sin 3x + C D sin 3x + C 3 ′ ′ ′ ′ Câu Cho hình lập phương ABCD.A B C D có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x + x + mx − 1nằm bên phải trục tung 1 B Không tồn m C m < D m < A < m < 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 3.a 2π 2.a π 2.a2 B C D A π 3.a 3 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B −2 ≤ m ≤ C m = D < m < √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ √ a a 15 a A B a 15 C D 3 2x + 2017 Câu Cho hàm số y = (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = Câu Biết R3 A f (x)dx = R3 B g(x)dx = Khi R3 [ f (x) + g(x)]dx C −2 D √ Câu 10 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = C (x + 4)2 + (y − 8)2 = 20 √ B (x − 4)2 + (y + 8)2 = D (x − 4)2 + (y + 8)2 = 20 Trang 1/5 Mã đề 001 R Câu 11 6x5 dxbằng A x6 + C B 6x6 + C C 30x4 + C D x6 + C Câu 12 Biết phương trình log22 x − 7log2 x + = có nghiệm x1 , x2 Giá trị x1 x2 A 64 B C 128 D 512 Câu 13 Tìm đạo hàm hàm số: y = (x + 1) 1 1 3 − A (x + 1) B (2x) C x D 3x(x2 + 1) 2 Câu 14 Tâm I bán kính R mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = là: A I(1; −2; 3); R = B I(1; 2; −3); R = C I(1; 2; 3); R = D I(−1; 2; −3); R = Câu 15 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = D S = −5 Câu 16 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 3a3 C 8a3 D 27a3 Câu 17 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 210 C 225 D 30 Câu 18 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = π1 xπ−1 Câu 19 Cho hàm số y = ax+b có đồ thị đường cong hình bên Tọa độ giao điểm đồ thị hàm cx+d số cho trục hoành A (0; 2) B (0; −2) C (2; 0) D (−2; 0) Câu 20 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m tham số thực) Có giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2? A B C D Câu 21 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (−∞; 1) D (1; 2) Câu 22 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; 6) B (−6; 7) C (7; −6) D (6; 7) −16 Câu 23 Có số nguyên x thỏa mãn log3 x343 < log7 A 184 B 92 C 193 i R2 R2h Câu 24 Nếu f (x)dx = 21 f (x) − dx A B C −2 x2 −16 ? 27 D 186 D Câu 25 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cự trị? A B C 15 D 17 Câu 26 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = − B y′ = C y′ = D y′ = xln3 x xln3 x Câu 27 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; +∞) B (−∞; 1) C (2; +∞) D (1; 2) Câu 28 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 x2 A f (x) = −sinx + + C B f (x) = sinx + + C 2 R R C f (x) = sinx + x2 + C D f (x) = −sinx + x2 + C Trang 2/5 Mã đề 001 Câu 29 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 14 B 18 + C 11 + D 28 Câu 30 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = B d > R C d = R D d < R Câu 31 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln C ln(6a2 ) D lna Câu 32 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C πr2 l D 2πrl A πrl B πrl2 3 R4 R4 R4 Câu 33 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C −1 D z+i+1 số ảo? Câu 34 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường thẳng B Một Elip C Một đường tròn D Một Parabol Câu 35 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 1 A √ B C √ D √ 13 √ Câu 36 (KHTN – Lần 1) Trong số phức z thỏa điều kiện |(1 + i)z + − 7i| = 2, tìm max |z| A max |z| = B max |z| = C max |z| = D max |z| = Câu 37 Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện w = (1 − 2i)z + 3, biết z số phức thỏa mãn |z + 2| = A x = B (x + 1)2 + (y − 2)2 = 125 2 C (x − 5) + (y − 4) = 125 D (x − 1)2 + (y − 4)2 = 125 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 √ Câu 39 Biết số phức z thỏa mãn |z − − 4i| = biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn Tính |z| √ √ √ A |z| = 33 B |z| = 50 C |z| = D |z| = 10 −2 − 3i Câu 40 Tìm giá trị lớn |z| biết z thỏa mãn điều kiện z + = − 2i √ C max |z| = D max |z| = A max |z| = B max |z| = Câu 41 Cho số phức z thoả mãn (1 + z)2 số thực Tập hợp điểm M biểu diễn số phức z A Đường tròn B Hai đường thẳng C Parabol D Một đường thẳng Câu 42 GọiM điểm biểu diễn số phức z = − 4i M ′ điểm biểu diễn số phức z′ = mặt phẳng tọa độ Oxy Tính diện tích tam giác OMM ′ 25 15 25 A S = B S = C S = 4 D S = 1+i z 15 Trang 3/5 Mã đề 001 Câu 43 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln Câu 44 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( A 128 B 64 C x2 )=8 32 D Câu 45 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C 2x + y − 4z + = D −2x − y + 4z − = Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 A M( ; ; ) 3 11 17 B M( ; ; ) 3 10 31 C M( ; ; ) 3 Câu 47 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π B 6π ln + 5 C ln + 21 D M( ; ; ) 3 cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 3π ln + Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y + 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 49 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = A 27 B 29 Câu 50 Biết a, b ∈ Z cho A R B (x + 1)e2x dx = ( C 23 D 25 ax + b 2x )e + C Khi giá trị a + b là: C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001