Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp đều S ABCcó cạnh đáy bằng a và cạnh bên bằng b Thể tích củ[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình S ABCcó cạnh đáy a cạnh bên √ b Thể tích khối chóp là: √ chóp 3ab2 a2 3b2 − a2 A VS ABC = B VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b D VS ABC = C VS ABC = 12 12 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = + B y = − ln 5 ln ln x x C y = −1+ D y = +1− ln ln 5 ln ln Câu Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 √ ′ ′ ′ Câu Cho lăng trụ ABC.A B C có đáy a, AA√′ = 3a Thể tích khối lăng trụ cho là: √ A a3 B 3a3 C 3a3 D 3a3 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu Hàm số sau khơng có cực trị? A y = cos x B y = x3 − 6x2 + 12x − C y = x2 D y = x4 + 3x2 + Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 − 2x2 + 3x + C y = x3 D y = −x4 + 3x2 − Câu Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A B 2022 C D Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y + z + = Khẳng định sau đúng? A (P) tiếp xúc mặt cầu (S ) B (P) cắt mặt cầu (S ) C (P) qua tâm mặt cầu (S ) D (P) không cắt mặt cầu (S ) Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (0 ; +∞) C (−2 ; 0) D (−∞ ; −2) Trang 1/5 Mã đề 001 √ Câu 13 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 7; 3, 9)· B (3, 1; 3, 3)· C (3, 5; 3, 7)· D (3, 3; 3, 5)· Câu 14 Đường thẳng y = tiệm cận ngang đồ thị đây? 2x − 1+x A y = B y = C y = x+1 x+2 − 2x D y = −2x + x−2 Câu 15 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; −2; 3) −n = (1; 2; 3) −n = (1; −2; −1) A → B → C → D → Câu 16 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = −8 − 12i C w = −8 + 12i D w = + 12i 4(−3 + i) (3 − i)2 Câu 17 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = 85 C |w| = D |w| = Câu 18 Số phức z = A -1 + 2i + i2017 có tổng phần thực phần ảo 2−i B C D Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C 21008 D −21008 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 25 1 Câu 21 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B −31 C 31 D −17 Câu 22 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = C A = 2k D A = 2(1 + 2i) Câu 23 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 24 √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu √ thức |z1 + z1 z2 | √ B 130 C 10 D 30 A 10 Câu 25 Phần thực số phức z = A − 11 13 B 29 13 − 2i (1 − i)(2 + i) + 2−i + 3i 29 C − 13 D 11 13 Câu 26 Cho khối lập phương có cạnh Thể tích khối lập phương cho A B C D Câu 27 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x3 + (a + 2)x + − a2 đồng biến khoảng (0; 1)? A B 12 C 11 D Trang 2/5 Mã đề 001 Câu 28 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 29 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 30 B 105 C 210 D 225 Câu 30 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (−∞; 1) D (1; +∞) Câu 31 Với a số thực dương tùy ý, ln(3a) − ln(2a) C ln(6a2 ) A lna B ln Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: D ln π−1 x π Câu 33 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 90 B 89 C 48 D 49 √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 34 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 − ab − bc − ca B a2 + b2 + c2 + ab + bc + ca C a + b + c D z+1 Câu 35 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ B P = + C P = 34 + D P = 26 A P = √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z A y′ = πxπ−1 B y′ = xπ−1 Biết điểm biểu diễn số phức ω = số phức ω A điểm N B điểm M C y′ = πxπ D y′ = bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm Q √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 40 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm R B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm Q Trang 3/5 Mã đề 001 √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| > B |z| < C < |z| < D ≤ |z| ≤ 2 2 Câu 42 Cho số phức z , cho z số thực w = thức |z| bằng? + |z|2 z số thực Tính giá trị biểu + z2 √ B A C D Câu 43 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B C D 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 R3 |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = − (x2 − 2x)dx (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 44 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 45 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a < a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x < y Câu 46 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 47 Trong khơng gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Câu 48 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m > −2 C −3 ≤ m ≤ D m < Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 3π A ln + B 6π ln + 5 C ln + π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 6π Câu 50 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 10π C 6π D 12π Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001