Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực x, y thỏa mãn hệ điều kiện x ≥ 0; y ≤ 18x3 + 4x = (3 − y[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếu < x < y < −3 C Nếu < x < π y > − 4π D Nếux = y = −3 Câu 2.√ Bất đẳng thức √ πsau đúng? e A ( √3 − 1) < ( √3 − 1) π e C ( + 1) > ( + 1) B 3π < 2π D 3−e > 2−e Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = x3 − 2x2 + 3x + D y = x−1 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa√độ Oxyz cho → −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ A I = ln( m+2 ) m+1 Rm dx theo m? x + 3x + m+1 m+2 B I = ln( ) C I = ln( ) m+2 2m + Câu Cho số thực dươngm Tính I = Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x 13 A B C −6 x π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = cos x π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = − 4 4 D I = ln( 2m + ) m+2 =0 D π π √ Tìm F( ) π π ln D F( ) = + 4 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2) x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B ( ; − ; ) C (2 ; −3 ; 1) D ( ; − ; ) 3 3 3 3 Câu Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 10 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 27 D 12 − → Câu 11 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 60 B 30 C 45◦ D 90◦ Trang 1/5 Mã đề 001 Câu 12 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 B 6a3 C 2a3 D A 3 Câu 13 Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−2 ; 0) B (−∞ ; −2) C (0 ; +∞) D (−1 ; 4) Câu 14 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −4 C −6 D −2 Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B C −3 D Câu 16 Thiết diện qua trục hình nón tam giác cạnh có độ dài a Tính diện tích tồn phần S hình nón C S = πa2 D S = πa2 A S = πa2 B S = πa2 4 (1 + i)(2 − i) Câu 17 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = 25 1 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B 17 C −31 D 31 Câu 18 Cho số phức z thỏa A −17 Câu 19 √ Cho số phức z1 = + 2i, √ z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ A 10 B 10 C 130 D 30 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C − 2i (1 − i)(2 + i) Câu 21 Phần thực số phức z = + 2−i + 3i 29 11 29 A − B − C 13 13 13 D D 11 13 Câu 22 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A B −9 C −10 D 10 Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z + z = 2bi C z − z = 2a D |z2 | = |z|2 Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 − i C z = − i D z = −3 + i Trang 2/5 Mã đề 001 Câu 26 Tìm nguyên hàm I = x A I = x2 cos + C C I = xsinx − cosx + C R xcosxdx x B I = x2 sin + C D I = xsinx + cosx + C Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z + 15 = Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B x2 x + C C x2 + x+1 + C D (x − 1) x + C x+1 Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x − = B y − = C x + y + z − = D z − = R + lnx dx(x > 0) Câu 30 Nguyên hàm x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 R2 Câu 31 Tính tích phân I = xe x dx A I = e2 B I = −e2 C I = 3e2 − 2e D I = e R1 Câu 32 Tích phân e−x dx e−1 A B e − C D − e e e R1 R R1 R1 Câu 33 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C 12 D −3 Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = + D P = 26 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C D √ 2 √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a + b + c C D a2 + b2 + c2 + ab + bc + ca Câu 37 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B 15 C D √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P B điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm N Trang 3/5 Mã đề 001 Câu 39 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = 13 B T = 13 C T = D T = 3 Câu 41 Cho số phức z (không phải số thực, khơng phải số ảo) thỏa mãn Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < 2 2 z+1 số ảo Tìm |z| ? Câu 42 Cho số phức z , thỏa mãn z−1 A |z| = B |z| = C |z| = D + z + z2 số thực − z + z2 < |z| < 2 D |z| = Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ chóp S ABC √ 3 3 a a 15 a 15 a 15 B C D A 16 Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 r 3x + Câu 45 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−∞; 0) D D = (−1; 4) Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −2 B C D −4 Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 29 27 B C D A 4 4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D cos x π Câu 49 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2abc B P = 2a+b+c C P = 2a+2b+3c D P = 26abc Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001