Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cắt mặt trụ bởi một mặt phẳng tạo với trục của nó một góc nhọn ta được A[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường parabol D Đường elip Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m ≤ C m < D m > Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = − D F( ) = + 4 4 4 Câu 5.√ Bất đẳng thức √ esau đúng? √ √ π e π A ( + 1) > ( + 1) B ( − 1) < ( − 1) C 3π < 2π D 3−e > 2−e Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 24 (m) B S = 28 (m) C S = 12 (m) D S = 20 (m) m R dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+1 m+2 2m + m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) m+2 2m + m+2 m+1 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 21 D R = 29 x−2 y x−1 = = điểm Câu Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 A ( ; − ; ) B (2 ; −3 ; 1) C ( ; − ; ) D ( ; − ; ) 3 3 3 3 Câu 10 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A B C −3 D −2 Câu 11 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 B C D A 2 Câu 12 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (−∞; 3) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho nghịch biến khoảng (3; +∞) D Hàm số cho đồng biến khoảng (1; 4) Trang 1/5 Mã đề 001 Câu 13 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 21 B 18 C 12 D 27 R2 R2 Câu 14 Cho hàm số f (x) liên tục R ( f (x) + 2x) = Tính f (x) A −1 B −9 C D Câu 15 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −8 B −6 C −4 D −2 Câu 16 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 2x − B y = C y = A y = x+2 x−2 x+1 Câu 17 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ 34 34 A |z| = C |z| = B |z| = 34 3 D y = 1+x − 2x D |z| = 34 √ Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B m ≥ m ≤ −1 C −1 ≤ m ≤ D m ≥ m ≤ Câu 19 Số phức z = A (1 + i)2017 có phần thực phần ảo đơn vị? 21008 i B 21008 C D Câu 20 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 21 √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w = 6z − 25i √ Cho số phức z thỏa mãn A 29 B C D 13 Câu 22 Số phức z = A -1 + 2i + i2017 có tổng phần thực phần ảo 2−i B C D Câu 23 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B 10 C −10 D Câu 24 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B Q(−2; −3) C N(2; 3) D M(2; −3) Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 26 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 0) B (0; 1) C (1; 2) D (−1; 2) Câu 27 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16π 16 A B C D 15 15 9 Trang 2/5 Mã đề 001 Câu 28 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: π−1 x π x−2 y−1 z−1 Câu 29 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 Câu 30 Phần ảo số phức z = − 3i A −2 B −3 C D Câu 31 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; 2) C (0; −2) D (2; 0) A y′ = πxπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = Câu 32 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = C y′ = − D y′ = xln3 x xln3 x Câu 33 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho C 2πrl D πrl2 A πrl B πr2 l 3 √ Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 35 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ A P = + B P = 26 C P = D P = 34 + Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C D 15 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D 2 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| > C |A| ≤ D |A| < √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Trang 3/5 Mã đề 001 Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − A P = (|z| − 2)2 √ Câu 42 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 2 A a + b + c + ab + bc + ca B a2 + b2 + c2 − ab − bc − ca D a + b + c C Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 1) −n = (−2; 3; 4) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(5; 5; 0) B M(2; −6; 4) C M(−2; −6; 4) Câu 45 Tìm đạo hàm hàm số: y = (x2 + 1) 1 3 − B (x + 1) C 3x(x + 1) A x D M(−2; 6; −4) D (2x) Câu 46 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD A V = 3a3 B V = a3 C V = 2a3 D V = a3 √ Câu 47 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = 2a C d = a D d = a √ Câu 48 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x + 4)2 + (y − 8)2 = √ C (x − 4)2 + (y + 8)2 = B (x + 4)2 + (y − 8)2 = 20 D (x − 4)2 + (y + 8)2 = 20 Câu 49 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (0; 2) C (2; +∞) D (−∞; −2) C 3i D Câu 50 Số phức z = − 3i có phần ảo A −3 B Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001