1. Trang chủ
  2. » Tất cả

Đề kiểm tra thpt môn toán (581)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 126,27 KB

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Khối trụ có bán kính đáy bằng chiều cao và bằng Rthì thể tích của nó bằn[.]

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 2πR3 C 4πR3 D 6πR3 Câu Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + C y = D y = sin x x−1 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(20; 15; 7) A C(6; −17; 21) B C(6; 21; 21) C C(8; ; 19) Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x −1+ B y = +1− A y = ln ln 5 ln ln x x C y = + D y = − ln 5 ln ln Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C 4πR3 D πR3 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π A B √ C 3π D 3π 3 Câu Hàm số sau đồng biến R? A y = tan x C y = x2 √ √ B y = x2 + x + − x2 − x + D y = x4 + 3x2 + x−2 y−6 z+2 Câu Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = d2 : −2 x−4 y+1 z+2 = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng cách −2 từ điểm M(1; 1; 1) đến (P) √ A 10 B √ C √ D √ 10 53 Câu 10 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (−3; 0) C (0; −3) D (1; −4) Câu 11 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Trang 1/5 Mã đề 001 x−2 y x−1 = = điểm −1 A(2 ; ; 3) Toạ độ điểm A′ đối xứng với A qua đường thẳng d tương ứng 10 5 A ( ; − ; ) B ( ; − ; ) C ( ; − ; ) D (2 ; −3 ; 1) 3 3 3 3 Câu 13 Thể tích khối hộp chữ nhật có kích thước a; 2a;3a A 6a2 B 2a3 C 6a3 D a3 z = Biết tập hợp điểm biểu diễn số phức zlà đường Câu 14 Cho số phức zthỏa mãn i + tròn (C) Tính bán kính rcủa đường trịn (C) √ √ A r = B r = C r = D r = Câu 12 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : Câu 15 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −3 B −2 C D − → Câu 16 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ ◦ A 90 B 45 C 30◦ D 60◦ Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B N(2; 3) C M(2; −3) D Q(−2; −3) Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = − i C z = −3 − i D z = + i − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 29 11 29 11 A − B C D − 13 13 13 13 Câu 21 biểu thức |z1 + z1 z2 | √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ √ A 30 B 130 C 10 D 10 Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i (1 + i)(2 + i) (1 − i)(2 − i) Câu 23 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = z C z = D z số ảo z + 2i + i2017 có tổng phần thực phần ảo Câu 24 Số phức z = 2−i A B C D -1 z2 Câu 25 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 13 B 11 C D Câu 26 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vng cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 3 A a B 2a C a D a Trang 2/5 Mã đề 001 Câu 27 Cho số phức z = + 9i, phần thực số phức z2 A 36 B −77 C D 85 Câu 28 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B C 17 D 15 Câu 29 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B ln C lna 3 D ln Câu 30 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (−6; 7) B (7; 6) C (7; −6) D (6; 7) Câu 31 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n3 = (1; 1; 1) B → n4 = (1; 1; −1) C → n2 = (1; −1; 1) D → n1 = (−1; 1; 1) Câu 32 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 12 B C D 11 Câu 33 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d > R B d < R C d = R D d = Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 97 85 A T = B T = 13 C T = 13 D T = 3 √  √  √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 37 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = 2016 B P = −2016 C P = D max T = √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm M Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A √ B C D 2 Câu 40 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C Phần thực z số âm D |z| = Trang 3/5 Mã đề 001 Câu 41 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = −2016 B P = 2016 C P = D P = Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng?  2  2 A P = |z|2 − B P = (|z| − 2)2 C P = (|z| − 4)2 D P = |z|2 − Câu 43 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B m > C −1 ≤ m < D m < −1 Câu 44 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ 2a3 a3 3 A V = a B V = 3a C V = D V = 3 Câu 45 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C − log5 a D + log5 a Câu 46 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, π R4 f (x) A π2 + 16π − 16 Câu 47 R B π2 − 16 C π2 + 16π − 16 16 D π2 + 15π 16 C x + C D 6x6 + C 6x5 dxbằng A x6 + C B 30x4 + C Câu 48 Cho hàm số có bảng biến thiên: Khẳng định sau đúng? A Hàm số đạt cực đại B Hàm số đạt cực đại C Hàm số đạt cực đại D Hàm số đạt cực đại Câu 49 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (1; +∞) C (0; 1) D (−1; 0) Câu 50 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng đáy, S A = 2a Gọi φ góc tạo hai mặt phẳng (S AC), (S BC) Tính cos φ =? √ √ √ 15 3 A B C D 5 2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 05/04/2023, 11:07

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN