Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Với giá trị nào của tham số m thì tiếp tuyến có hệ số góc nhỏ nhất của đ[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = D m = −15 Câu Kết đúng? R A sin2 x cos x = −cos2 x sin x + C R C sin2 x cos x = cos2 x sin x + C Câu Hàm số sau khơng có cực trị? A y = x2 C y = x4 + 3x2 + sin3 x + C R sin3 x D sin2 x cos x = − + C B R sin2 x cos x = B y = cos x D y = x3 − 6x2 + 12x − Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 100a3 C 30a3 D 20a3 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (−2; −1; 2) D (2; −1; −2) Câu Số nghiệm phương trình x + 5.3 x − = A B C D x tập xác định Câu Giá trị nhỏ hàm số y = x +1 1 A y = B y = −1 C y = − D y = R R R R 2 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) Câu Họ tất nguyên hàm hàm số f (x) = 5x4 + cos x A x5 + sin x + C B 5x5 − sin x + C C 5x5 + sin x + C D x5 − sin x + C 1 Câu 10 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C 16 D Câu 11 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A I(−1; −2; 3) B J(−3; 2; 7) C H(−2; −1; 3) D K(3; 0; 15) Câu 12 Cho hàm số f (x) liên tục R Gọi F(x), G(x) hai nguyên hàm f (x) R thỏa mãn Re2 f (ln x) 2F(0) − G(0) = 1, F(2) − 2G(2) = F(1) − G(1) = −1 Tính 2x A −2 B −4 C −6 D −8 Trang 1/5 Mã đề 001 Câu 13 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 2x − 1+x A y = B y = C y = D y = x−2 x+2 − 2x x+1 Câu 14 Trong khơng gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) √ B (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 A (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 C (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 Câu 15 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π A V = B V = C V = D V = 15 Câu 16 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 + 12i B w = + 12i C w = −8 − 12i D w = −8 − 12i Câu 17 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực B Mô-đun số phức z số phức C Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực dương 1 25 = + Khi phần ảo z bao nhiêu? Câu 18 Cho số phức z thỏa z + i (2 − i)2 A −17 B 31 C 17 D −31 Câu 19 Tính mơ-đun số phức z√thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = 34 B |z| = C |z| = D |z| = 34 3 4(−3 + i) (3 − i)2 Câu 20 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ B |w| = 85 C |w| = D |w| = A |w| = 48 Câu 21 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A B C 29 D 13 Câu 22 biểu thức |z1 + z1 z2 | √ √ z2 = − i Giá trị √ √ Cho số phức z1 = + 2i, B 10 C 10 D 30 A 130 Câu 23 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i Câu 24 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D √ Câu 25 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ −1 Câu 26 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 30◦ D 60◦ Câu 27 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D 2 4 Câu 28 Có giá trị nguyên tham số m để hàm số y = −x + 6x2 + mx có ba điểm cực trị? A B 17 C D 15 Câu 29 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πr2 l B πrl C 2πrl D πrl2 3 Trang 2/5 Mã đề 001 Câu 30 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (−2; 0) C (0; −2) D (0; 2) Câu 31 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (0; 2) B (1; 3) C (3; +∞) D (−∞; 1) Câu 32 Phần ảo số phức z = − 3i A −2 B D C −3 Câu 33 Cho số phức z = + 9i, phần thực số phức z2 A 36 B C 85 D −77 Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm S B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm Q Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | √ điểm A hình vẽ bên điểm Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm M D điểm N Câu 38 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = B P = 34 + C P = 26 D P = + Câu 39 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = −2016 C P = D P = √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 Câu 42 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Trang 3/5 Mã đề 001 Câu 43 Cho hàm số y = f (x) có đạo hàm f ′ (x) = x2 − 2x, ∀x ∈ R Hàm số y = −2 f (x) đồng biến khoảng A (−2; 0) B (0; 2) C (2; +∞) D (−∞; −2) Câu 44 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ A M(− ; ; −1) B M( ; ; −1) 3 C M(− ; ; −1) D M(− ; ; 2) Câu 45 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = −2 C x = D M(1; −2) −a = (4; −6; 2) Phương Câu 46 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = −1 + t D x = + 2ty = −3tz = + t Câu 47 R 6x5 dxbằng A 6x6 + C B x + C C 30x4 + C D x6 + C Câu 48 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m < −1 B m > C −1 ≤ m < D −1 ≤ m ≤ Câu 49 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 84 C S = 364 D S = 96 Câu 50 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n A −1 16 B −16 C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001