Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề thi 001 Câu 1 Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i Khi đó số phức[.]
Tài liệu Pdf free LATEX ĐỀ ÔN TẬP THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề thi 001 Câu Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B C 10 D −9 √ Câu Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B −1 ≤ m ≤ C ≤ m ≤ D m ≥ m ≤ −1 Câu Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B C −7 D −3 Câu Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = 2ki D A = Câu Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số phức D Mô-đun số phức z số thực không âm Câu Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i Câu Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C [1; +∞) D (−∞; 1) Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A a B 33 a C 2a D 3 a Câu Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; 6) D (7; −6) Câu 10 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho D 31 πr2 l A πrl B 2πrl C 23 πrl2 Câu 11 Xét số phức z thỏa mãn z2 − − 4i = 2|z| Gọi M m giá trị lớn giá trị nhỏ |z| Giá trị M + m2√bằng A 14 B 11 + C 28 R Câu 12 Cho x dx = F(x) + C Khẳng định đúng? A F ′ (x) = 1x B F ′ (x) = ln x C F ′ (x) = − x12 √ D 18 + D F ′ (x) = x2 Câu 13 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 C S = πRh + πR2 D S = πRl + 2πR2 Câu 14 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a 3a a 15 3a 30 A B C D 2 10 Trang 1/5 Mã đề 001 Câu 15 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x4 + 3x2 D y = x3 + 3x2 + 6x − Câu 16 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC a3 a3 15 a 15 a3 15 A B C D 16 Câu 17 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 Câu 18 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − D R2 (x2 − 2x)dx + R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx 1 R3 |x2 − 2x|dx (x2 − 2x)dx Câu 19 Biết số phức z thỏa mãn |z − − 4i| = Tính |z| √ B |z| = 50 A |z| = √ biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn C |z| = √ 10 D |z| = √ 33 Câu 20 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi độ dài MN √ B MN = C MN = D MN = A MN = z − z =2? Câu 21 Tìm tập hợp điểm M biểu diễn số phức z cho z − 2i A Một đường thẳng B Một đường tròn C Một Elip D Một Parabol Câu 22 Gọi z1 z2 nghiệm phương trình z2 − 2z + 10 = Gọi M, N, P điểm biểu diễn √ z1 , z2 số phức √ w = x + iy mặt phẳng phức Để √ tam giác MNP √ số phức k A w = 27√− i hoặcw = 27 +√i B w = + √ 27 hoặcw = −√ 27 C w = + 27i hoặcw = − 27i D w = − 27 − i hoặcw = − 27 + i z+i+1 số ảo? Câu 23 Tìm tập hợp điểm M biểu diễn số phức z cho w = z + z + 2i A Một đường thẳng B Một Elip C Một Parabol D Một đường tròn Câu 24 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A B C 10 D √ Câu 25 (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề ? 1 3 A |z| < B < |z| < C ≤ |z| ≤ D |z| > 2 2 Câu 26 (Chuyên Lào Cai) Xét số phức z z có điểm biểu diễn M M ′ Số phức ω = (4+3i)z ω có điểm biểu diễn N N ′ Biết M, M ′ , N, N ′ bốn đỉnh hình chữ nhật Tìm 9 giá trị nhỏ ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5| 2 2 Trang 2/5 Mã đề 001 A 2 C √ B √ 13 D √ Câu 27 Cho số phức z, w khác biểu diễn hai điểm A, B mặt phẳng Oxy Nếu số ảo mệnh đề sau đúng? A Tam giác OAB tam giác C Tam giác OAB tam giác vuông z w B Tam giác OAB tam giác nhọn D Tam giác OAB tam giác cân Câu 28 Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10 Giá trị lớn giá trị nhỏ |z| A 10 B C D Câu 29 Cho số phức z thỏa mãn |z| = Biết tập hợp điểm biểu diễn số phức w = (3 + 4i)z + i đường trịn Tính bán kính r đường trịn A r = 22 B r = C r = 20 D r = Câu 30 Cho số phức z thỏa mãn |i + 2z| = |z − 3i| Tập hợp điểm biểu diễn số phức w = (1 − i)z + đường thẳng có phương trình A x + y − = B x − y + = C x − y + = D x + y − = Câu 31 Gọi z1 z2 nghiệm phương trình z2 − 4z + = Gọi M, N điểm biểu diễn z1 , z2 trên√mặt phẳng phức Khi độ dài MN √ B MN = C MN = D MN = A MN = Câu 32 Cho z1 , z2 hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = A P = C P = D P = 2 Câu 33 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 D yCD = Câu 34 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) 1 A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 35 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ 6, S B = Câu 36 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a √ a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 1200 D 450 Câu 37 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 38 Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B [2; +∞) C (−∞; 2] D (1; 2] Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân A BC = 2a Tính thể tích V khối lăng trụ ABC.A′ B′C ′ A V = 6a3 B V = a3 C V = 3a3 D V = 12a3 Trang 3/5 Mã đề 001 Câu 40 Khối đa diện khối đa diện sau có tính chất: “Mỗi mặt khối đa diện tam giác đỉnh đỉnh chung ba mặt ”? A Khối lập phương B Khối bát diện C Khối mười hai mặt D Khối tứ diện Câu 41 Cho hàm số y = −x4 − x2 + Trong khẳng định sau, khẳng định sai? A Điểm cực tiểu hàm số (0; 1) B Đồ thị hàm số khơng có tiệm cận C Đồ thị hàm số cắt trục tung điểm (0; 1) D Đồ thị hàm số có điểm cực đại Câu 42 Bảng biến thiên hình hàm số hàm số sau? x −∞ +∞ + y′ + +∞ y A y = 2x + x−1 B y = 2x − x−1 −∞ C y = 2x + x−1 D y = 2x − x+1 Câu 43 Cho hàm số y = f (x) liên tục R có đạo hàm f ′ (x) = x(x + 1) Hàm số y = f (x) đồng biến khoảng khoảng đây? A (0; +∞) B (−∞; 0) C (−1; +∞) D (−1; 0) Câu 44 Cho hàm số y = x3 − 3x2 − 9x − Trong khẳng định sau, khẳng định sai? A Hàm số có điểm cực đại điểm cực tiểu B Hàm số có hai điểm cực trị C Giá trị cực tiểu hàm số D Giá trị cực đại hàm số Câu 45 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 2) C (−1; 2) D (1; 0) = y−1 = Câu 46 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : x−2 2 phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) A 31 B C D 113 z−1 −3 Gọi (P) mặt Câu 47 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ A 2a B 3 a C 22 a D 33 a Câu 48 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C [1; +∞) D (−∞; 1) Câu 49 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x)dx A 34 B C D 23 Câu 50 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trình là: Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001