Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tích của khối cầu đó là A 4 3[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C πR3 D 4πR3 A πR3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường trịn C Đường hypebol D Đường elip √ Câu lăng trụ ABC.A′ B′C ′ có đáy a, AA√′ = 3a Thể tích khối lăng trụ cho là: √ Cho A 3a3 B 3a3 C 3a3 D a3 p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 B S = C S = D S = A S = 6 Câu Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến R B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số nghịch biến (0; +∞) √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 300 D 1200 √ d = 1200 Gọi Câu 10 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt phẳng (A1 BK) √ a a 15 a A B C D a 15 3 Câu 11 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 A (m ) B (m ) C 3(m2 ) D (m2 ) Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường tròn có bán kính lớn A m = −7 B m = C m = D m = Câu 13 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) Trang 1/5 Mã đề 001 A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 2 2 2 C (S ) : (x − 2) + (y − 1) + (z + 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = 3 Câu 14 Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 15 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; +∞) D ( ; 2] [22; +∞) A [ ; 2] [22; +∞) 4 Câu 17 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Chỉ có số C Khơng có số D Câu 18 Với số phức z, ta có |z + 1|2 A z + z + B z2 + 2z + Câu 19 Số phức z = A C |z|2 + 2|z| + + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 Câu 20 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B 11 + 2i C −3 − 2i D z · z + z + z + D D −3 + 2i Câu 21 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 22 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực không âm C Mô-đun số phức z số phức B Mô-đun số phức z số thực D Mô-đun số phức z số thực dương √ Câu 23 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ B m ≥ m ≤ −1 C −1 ≤ m ≤ D ≤ m ≤ 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ A |w| = 48 B |w| = C |w| = 85 D |w| = Câu 25 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 26 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x π 3π 3π π A V = B V = C V = D V = Trang 2/5 Mã đề 001 x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B C 15 D −2 Câu 28 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 A V = a B V = πa C V = D V = πa3 6 Câu 29 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≥ −8 B m < −3 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m ≤ −2 D m ≤ Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng (ABCD) 60 Tính √ sin góc MN và√mặt phẳng (S BD) 10 A B C D 5 Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường tròn đáy, cạnh AD, BC đường sinh hình trụ (T ) Tính cạnh hình vng √ √ 3a 10 A 3a B 3a C 6a D Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 3; 5) B (−2; 2; 6) C (4; −6; 8) D (1; −2; 7) Câu 33 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = 2x4 + 4x2 + C y = −x4 − 2x2 − D y = x4 − 2x2 − Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 35 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = B max T = C P = 2016 D P = −2016 Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C 15 D √ Câu 37 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm N D điểm Q Câu 38 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C 18 D z Câu 39 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D Trang 3/5 Mã đề 001 Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z √2 | √ √ B P = 26 C P = 34 + D P = A P = + √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B < |z| < C ≤ |z| ≤ D |z| < 2 2 Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = + i D A = Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D r 3x + Câu 44 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) Câu 45 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx + (x2 − 2x)dx B C R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − D R3 R3 1 |x − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x − 2x)dx + R3 (x2 − 2x)dx √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = −2x4 + 4x2 D y = x3 − 3x2 Câu 48 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 29 27 25 B C D A 4 4 Câu 49 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A (2x + 1)2 dx = + C B sin xdx = cos x + C R R e2x C x dx =5 x + C D e2x dx = +C Câu 50 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001