TRƯỜNG ĐẠI HỌC HỒNG ĐỨC KHOA KHOA HỌC TỰ NHIÊN Mã đề thi 101 (Đề gồm 5 trang) KỲ THI ĐÁNH GIÁ CHẤT LƯỢNG LỚP 12 NĂM HỌC 2021 2022 Bài thi TOÁN Thời gian làm bài 90 phút, không kể thời gian phát đề Họ[.]
TRƯỜNG ĐẠI HỌC HỒNG ĐỨC KỲ THI ĐÁNH GIÁ CHẤT LƯỢNG LỚP 12 KHOA KHOA HỌC TỰ NHIÊN NĂM HỌC 2021 - 2022 Bài thi: TOÁN Mã đề thi: 101 (Đề gồm trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề Họ tên: Số CMND: Số báo danh: Câu Cho hàm số đa thức bậc ba y = f ( x ) có đồ thị hình vẽ bên Mệnh đề sau mệnh đề đúng? A B C D Hàm số Hàm số Hàm số Hàm số f f f f ( x ) đồng biến (0; +∞) ( x ) nghịch biến (−2; 1) ( x ) đồng biến (1; +∞) ( x ) nghịch biến (−∞; −2) Câu Cho hàm số y = f ( x ) có bảng xét dấu đạo hàm sau x ′ f (x) −∞ − + Số điểm cực trị hàm số cho là: A B + +∞ − + C D Câu Cho hàm số y = f ( x ) có đồ thị hình vẽ bên Khẳng định sai? A f ( x ) = −2 [0;2] B f ( x ) = −4 C max f ( x ) = [−2;0] [−2; 0] D max f ( x ) = [−2; 0] Câu Hàm số có đồ thị đường cong hình vẽ bên? x2 + x−1 D y = x3 − 3x + x+1 x−1 C y = − x4 + 2x2 − A y= B y= Câu Tiệm cận ngang đồ thị hàm số y = A y = 1 B y=− 2x + x−1 C y = D y = −1 C (0; +∞) D R 2021 Câu Tập xác định hàm số y = x 2022 A [0; +∞) B (−∞; 0) Câu Với a số thực dương tùy ý, log3 a A + log3 a B − log3 a KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC C log3 a http://tuyensinh.hdu.edu.vn/ D − log3 a Trang 1/5 - Mã đề thi 101 Câu Trên tập R, đạo hàm hàm số y = 7x A y′ = x7x−1 B y′ = 7x ln Câu Nghiệm phương trình log2 ( x − 1) = A x = B x = 10 D y′ = C x = D x = Câu 10 Tập nghiệm bất phương trình log5 x > −2 1 ; +∞ −∞; A (−∞; −32) B C 25 25 Câu 11 Thể tích khối lập phương có cạnh 3a A 3a3 B 27a3 7x ln C y′ = 7x D (−32; +∞) C 9a3 D a3 Câu 12 Thể tích khối lăng trụ đứng tam giác có tất cạnh a √ √ √ a3 a3 a3 a3 A B C D 3 Câu 13 Cho hai số phức z1 = − 5i, z2 = + 4i Phần thực số phức z1 z2 A −23 B −14 C 26 Câu 14 Tìm phần ảo số phức z = 19 − 20i? A 19 B 20i D −7 C −20 D 20 Câu 15 Cho số phức z = − i Điểm điểm biểu diễn số phức z mặt phẳng tọa độ? A Q (2; 1) B P (1; 2) C M (2; −1) D N (−1; 2) Câu 16 Tính diện tích hình phẳng giới hạn đường y = x2 − x y = x + 17 32 A 16 B C D 3 Câu 17 Nếu hàm số y = f ( x ) có đạo hàm liên tục R thỏa mãn f (0) = Z1 f ′ ( x ) dx = A f (1) = Câu 18 sai A Zb C Zb a a B f (1) = −3 D f (1) = 10 C f (1) = Cho hàm số f ( x ) liên tục [ a ; b] F ( x ) nguyên hàm f ( x ) [ a ; b] Tìm khẳng định f ( x ) dx = F ( a) − F (b) f ( x ) dx = − Za f ( x ) dx b B Zb f ( x ) dx = F (b) − F ( a) D Za f ( x ) dx = a a Câu 19 Trên khoảng (0; +∞), họ nguyên hàm hàm số f ( x ) = x2 − x Z Z x3 − x + C f ( x )dx = 2x + x − + C f ( x )dx = A B 3 Z Z x3 − − x + C f ( x )dx = f ( x )dx = 2x + x + C C D 3 Câu 20 Cho cấp số cộng (un ) có u1 = cơng sai d = Tính u5 A 14 B 10 C 11 D 17 Câu 21 Có cách xếp bạn học sinh ngồi vào hàng ghế có ghế (mỗi bạn ngồi ghế)? A 24 B 120 C D KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 2/5 - Mã đề thi 101 Câu 22 Cho hình lăng trụ đứng ABC.A′ B′ C ′ có AA′ = a Khoảng cách hai đường thẳng AB A′ C ′ a A B a C 2a D Câu 23 Trong không gian Oxyz, cho đường thẳng (d) : A (−1; 0; 7) B (−1; 0; −7) y−2 z−1 x+3 = = Điểm sau thuộc (d)? −1 C (−1; 1; 7) D (1; 0; 7) Câu 24 Trong không gian Oxyz, cho mặt phẳng ( P) : x − 3y + 5z − = Một véctơ pháp tuyến ( P) A (1; 3; 5) B (1; −3; 5) C (−3; 5; −3) D (0; −3; 5) Câu 25 Trong không gian Oxyz, cho M = (1; 3; −1) N = (−1; 1; 0) Độ dài đoạn thẳng MN √ √ √ A B 11 C 2 D → − → − − → − → → → Câu 26 Trong không gian Oxyz, cho − u = (2 i − k ) − ( i − j ) Tọa độ − u A (1; −3; −1) B (2; −1; 0) C (2; 3; −1) D (1; 3; −1) Câu 27 Cho khối trụ có bán kính đáy R chiều cao 2R Tính thể tích khối trụ A πR2 B 2πR2 C πR3 D 2πR3 Câu 28 Cho mặt cầu (S) có đường kính AB = cm Tính diện tích mặt cầu (S) A 64π cm3 B 16π cm2 C 16π cm3 D 64π cm2 Câu 29 Hàm số nghịch biến R? x−2 A y = − x4 + x2 B y= x+1 D y = −3x3 − 3x C y = x3 + x Câu 30 Cho hàm số y = f ( x ) = ax4 + bx2 + c, ( a, b, c ∈ R ) có đồ thị đường cong hình bên Tìm tất giá trị tham số thực m để hàm số y = f ( x − m) đạt cực tiểu x = " m=5 A B m = C m = D m = m=1 Câu 31 Với giá trị dương tham số m, hàm số f ( x ) = −2? A m = B m = x + m2 có giá trị lớn đoạn [0; 1] x−2 C m = D m = Câu 32 Cho hàm số y = 2x + ln (1 − 2x ) Gọi M m giá trị lớn giá trị nhỏ hàm số −1; Khi M + m 3 − ln A B −2 + ln C D − + ln 2 Câu 33 A √ Gọi z1 nghiệm phức có phần ảo dương phương trình 2z2 − 2z + = Mô đun 10 B 130 10 Câu 34 Nếu A √ Z [ f ( x ) + g( x )]dx = B C Z √ [3 f ( x ) − 2g( x )]dx = C D 13 Z 1 + i2020 z1 z1 √ 130 10 [ f ( x ) + 6g( x )] dx D Câu 35 Lập số tự nhiên có chữ số thuộc tập hợp X = {0; 1; 2; 3; 4; 5; 6} Lấy ngẫu nhiên số, tính xác suất để số lấy số chẵn có chữ số đôi khác KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 3/5 - Mã đề thi 101 A 12 B 14406 C 30 343 D 1600 2401 Câu 36 Cho chóp S.ABC có SA vng góc với đáy, SA = AB = a Tính góc đường thẳng SB mặt phẳng ( ABC ) A 75◦ B 45◦ C 30◦ D 60◦ x−2 y+1 z+1 = = Gọi M1 ( a1 ; b1 ; c1 ) M2 ( a2 ; b2 ; c2 ) −3 hai điểm phân biệt thuộc đường thẳng (d) cho khoảng cách từ chúng đến mặt phẳng (Oyz) Tính c1 + c2 14 A − B 10 C D 3 Câu 37 Trong mặt phẳng Oxyz, cho đường thẳng (d) : Câu 38 Trong khơng gian Oxyz, phương trình mặt phẳng vng góc với trục Ox qua điểm M (2; −1; 3) A x + = B x − = C x = D x − = q Câu 39 Cho f ( x ) = x3 − 3x2 + Phương trình f ( f ( x ) + 1) + = f ( x ) + có số nghiệm thực A B C D Câu 40 Tổng S tất nghiệm thuộc khoảng (0; 4π ) phương trình 2022sin x − 2022cos A S = 18π B S = 8π C S = 7π D S = 16π 2x = ln (cot x ) Câu 41 Cho hàm số y = f ( x ) có đạo hàm f ′ ( x ) = x2 − 3x + 2, ∀ x ∈ R Biết F ( x ) nguyên hàm hàm số f ( x ) đồ thị hàm số F ( x ) có điểm cực trị M(0; 2) Khi F (1) 17 31 17 A B C D − 12 12 12 12 Câu 42 Cho hàm số f ( x ) = x3 + ax2 + bx + c ( a, b, c ∈ R ) có hai điểm cực trị −1 Gọi y = g( x ) hàm số bậc hai có đồ thị cắt trục hồnh hai điểm có hồnh độ trùng với điểm cực trị f ( x ), đồng thời có đỉnh nằm đồ thị f ( x ) với tung độ Diện tích hình phẳng giới hạn hai đường y = f ( x ) y = g( x ) gần với giá trị đây? A 10 B 12 C 13 D 11 Câu 43 Trên tập hợp số phức, xét phương trình z2 − 2mz + 6m − = (m tham số thực) Có giá trị ngun m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 · z1 = z2 · z2 ? A B C D Câu 44 Cho hình lăng trụ ABC.A′ B′ C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ xuống mặt phẳng ( ABC ) trung điểm đoạn AB Mặt bên ( AA′ C ′ C ) tạo với đáy góc 30◦ Thể tích khối lăng trụ ABC.A′ B′ C ′ √ √ 3a3 3a3 a3 a3 A B C D 16 16 48 y+1 z−1 x−1 = = mặt phẳng ( P) : x + y + z + = 2 Gọi (d′ ) hình chiếu vng góc (d) lên mặt phẳng ( P) Lấy M( a; b; 1) thuộc (d′ ) Tính 2a + 3b A −7 B −11 C −4 D −9 ′ Câu 46 Cho hàm đa thức y = f x2 + 2x có đồ thị cắt trục Ox điểm phân biệt hình vẽ Hỏi có bao nhiêu giá trị tham số m với 2022m ∈ Z để hàm số g ( x ) = f x2 − | x − 1| − 2x + m có điểm cực trị? Câu 45 Trong không gian Oxyz, cho đường thẳng (d) : KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 4/5 - Mã đề thi 101 A 2020 B 2023 C 2021 D 2022 Câu 47 Cho x số nguyên dương y số thực Có tất cặp số ( x ; y) thỏa mãn A 10 B Vô số ln (1 + x + 2y) = 2y + 3x − 10? C 11 D Câu 48 Cho số phức z thoả mãn iz.z + (1 + 2i )z − (1 − 2i )z − 4i = Giá trị lớn P = |z + + 2i | + |z + − i | gần số sau đây? A 7,4 B 4,6 C 4,2 D 7,7 x+1 y−1 z+2 x−1 y+3 z−1 = = , ( d2 ) : = = −1 2 → điểm A(4; 1; 2) Gọi ∆ đường thẳng qua A cắt d1 cách d2 khoảng lớn Lấy − u = ( a; 1; c) → véctơ phương ∆ Độ dài − u √ √ √ √ A B 86 C D 85 Câu 49 Trong không gian Oxyz, cho hai đường thẳng (d1 ) : Câu 50 Cho hình nón đỉnh S có độ dài đường cao R đáy đường trịn tâm O bán kính R Gọi (d) tiếp tuyến đường tròn đáy A √ ( P) mặt phẳng chứa SA (d) Mặt phẳng ( Q) thay đổi qua S cắt đường tròn O hai điểm C, D cho CD = 3R Gọi α góc tạo ( P) ( Q) Tính giá trị lớn cos α √ √ √ √ 10 10 10 A B C D 10 5 10 ——- HẾT ——- KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 5/5 - Mã đề thi 101 TRƯỜNG ĐẠI HỌC HỒNG ĐỨC KỲ THI ĐÁNH GIÁ CHẤT LƯỢNG LỚP 12 KHOA KHOA HỌC TỰ NHIÊN NĂM HỌC 2021 - 2022 Bài thi: TOÁN Mã đề thi: 101 (Đề gồm trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề ĐÁP ÁN C C C A C 10 C B B A B 11 12 13 14 15 B D B C A 16 17 18 19 20 D A A B A 21 22 23 24 25 B B A B D KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC 26 27 28 29 30 D D B D A 31 32 33 34 35 C B D B C 36 37 38 39 40 http://tuyensinh.hdu.edu.vn/ B A D A C 41 42 43 44 45 C B D C B 46 47 48 49 50 C D D B A Trang 6/5 - Mã đề thi 101 TRƯỜNG ĐẠI HỌC HỒNG ĐỨC KỲ THI ĐÁNH GIÁ CHẤT LƯỢNG LỚP 12 KHOA KHOA HỌC TỰ NHIÊN NĂM HỌC 2021 - 2022 Bài thi: TOÁN Mã đề thi: 101 (Lời giải gồm 20 trang) Thời gian làm bài: 90 phút, không kể thời gian phát đề LỜI GIẢI CHI TIẾT Câu Cho hàm số đa thức bậc ba y = f ( x ) có đồ thị hình vẽ bên Mệnh đề sau mệnh đề đúng? A B C D Hàm số Hàm số Hàm số Hàm số f f f f ( x ) đồng biến (0; +∞) ( x ) nghịch biến (−2; 1) ( x ) đồng biến (1; +∞) ( x ) nghịch biến (−∞; −2) Lời giải Đáp án C □ Câu Cho hàm số y = f ( x ) có bảng xét dấu đạo hàm sau x ′ f (x) −∞ − + Số điểm cực trị hàm số cho là: A B + +∞ − + C D Lời giải Đáp án C Dựa vào bảng xét dấu ta thấy y = f ( x ) có điểm cực trị □ Câu Cho hàm số y = f ( x ) có đồ thị hình vẽ bên Khẳng định sai? A f ( x ) = −2 [0;2] B f ( x ) = −4 [−2;0] C max f ( x ) = [−2; 0] D max f ( x ) = [−2; 0] Lời giải Đáp án C max f ( x ) = mệnh đề sai □ [−2; 0] Câu Hàm số có đồ thị đường cong hình vẽ bên? x+1 x−1 C y = − x4 + 2x2 − A y= x2 + x−1 D y = x3 − 3x + B y= KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 7/20 - Mã đề thi 101 Lời giải Đáp án A Từ đồ thị, ta thấy đồ thị hàm số có đường tiệm cận đứng x = 1, đường tiệm cận ngang y = □ Câu Tiệm cận ngang đồ thị hàm số y = 2x + x−1 C y = D y = −1 A y = B y=− Lời giải Đáp án C TXĐ D = R \ {1} 2x + Ta có: lim y = lim = x →±∞ x →±∞ x − Nên đường thẳng y = tiệm cận ngang đồ thị hàm số □ 2021 Câu Tập xác định hàm số y = x 2022 A [0; +∞) B (−∞; 0) C (0; +∞) D R 2021 Lời giải Đáp án C Do số không nguyên nên hàm số cho xác định x > 2022 Vậy tập xác định hàm số cho D = (0; +∞) □ Câu Với a số thực dương tùy ý, log3 a D − log3 a log3 a = log3 − log3 a = − log3 a □ Lời giải Đáp án B Ta có log3 a A + log3 a B − log3 a C Câu Trên tập R, đạo hàm hàm số y = 7x 7x ln A y′ = x7x−1 B y′ = 7x ln C y′ = 7x D y′ = Lời giải Đáp án B Đạo hàm hàm số y = 7x y′ = 7x ln Câu Nghiệm phương trình log2 ( x − 1) = A x = B x = 10 C x = □ D x = Lời giải Đáp án A Ta có log2 ( x − 1) = ⇔ x − = 23 ⇔ x = □ Câu 10 Tập nghiệm bất phương trình log5 x > −2 KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 8/20 - Mã đề thi 101 1 C D (−32; +∞) ; +∞ −∞; 25 25 Vậy tập nghiệm bất phương trình Lời giải Đáp án B Ta có log5 x > −2 ⇔ x > 5−2 ⇔ x > 25 ; +∞ □ 25 A (−∞; −32) B Câu 11 Thể tích khối lập phương có cạnh 3a A 3a3 B 27a3 C 9a3 D a3 Lời giải Đáp án B Thể tích khối lập phương có cạnh 3a V = (3a)3 = 27a3 □ Câu 12 Thể tích khối lăng trụ đứng tam giác có tất cạnh a √ √ √ a3 a3 a3 a3 A B C D 3 Lời giải Đáp án D Khối lăng trụ đứng tam giác có tất cạnh a có đường cao a √ √ a2 a3 diện tích đáy nên tích V = □ 4 Câu 13 Cho hai số phức z1 = − 5i, z2 = + 4i Phần thực số phức z1 z2 A −23 B −14 C 26 D −7 Lời giải Đáp án B z2 = + 4i ⇒ z2 = − 4i Ta có z1 z2 = (2 − 5i ) (3 − 4i ) = −14 − 23i Vậy phần thực số phức z1 z2 −14 Câu 14 Tìm phần ảo số phức z = 19 − 20i? A 19 B 20i □ C −20 D 20 Lời giải Đáp án C Phần ảo số phức z = 19 − 20i −20 □ Câu 15 Cho số phức z = − i Điểm điểm biểu diễn số phức z mặt phẳng tọa độ? A Q (2; 1) B P (1; 2) C M (2; −1) D N (−1; 2) Lời giải Đáp án A Ta có: z = + i Vậy số phức z biểu diễn điểm Q (2; 1) mặt phẳng tọa độ □ Câu 16 Tính diện tích hình phẳng giới hạn đường y = x2 − x y = x + 17 32 A 16 B C D 3 KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 9/20 - Mã đề thi 101 " x = −1 2 Lời giải Đáp án D Ta có x − x = x + ⇔ x − 2x − = ⇔ x=3 Khi diện tích hình phẳng giới hạn đường y = x2 − x y = x + Z3 Z3 32 − x2 + 2x + dx = S= x − x − ( x + 3) dx = −1 □ −1 Câu 17 Nếu hàm số y = f ( x ) có đạo hàm liên tục R thỏa mãn f (0) = Z1 f ′ ( x ) dx = A f (1) = B f (1) = −3 C f (1) = D f (1) = 10 Lời giải Đáp án A Ta có Z1 Suy Z1 Câu 18 sai A Zb C Zb a a f ′ ( x ) dx = f ( x )|10 = f (1) − f (0) f ′ ( x ) dx = ⇔ f (1) − f (0) = ⇔ f (1) = f (0) + = Vậy f (1) = □ Cho hàm số f ( x ) liên tục [ a ; b] F ( x ) nguyên hàm f ( x ) [ a ; b] Tìm khẳng định f ( x ) dx = F ( a) − F (b) f ( x ) dx = − Za B Zb f ( x ) dx = F (b) − F ( a) D Za f ( x ) dx = a f ( x ) dx a b Lời giải Đáp án A Theo định nghĩa tích phân Zb a f ( x ) dx = F (b) − F ( a) □ Câu 19 Trên khoảng (0; +∞), họ nguyên hàm hàm số f ( x ) = x2 − x Z Z x3 − x + C f ( x )dx = 2x + x − + C A B f ( x )dx = 3 Z Z x3 − C D − x + C f ( x )dx = f ( x )dx = 2x + x + C 3 Z x3 − x + C □ Lời giải Đáp án B Ta có f ( x )dx = Câu 20 Cho cấp số cộng (un ) có u1 = cơng sai d = Tính u5 A 14 B 10 C 11 D 17 Lời giải Đáp án A u5 = u1 + 4d = + 12 = 14 □ Câu 21 Có cách xếp bạn học sinh ngồi vào hàng ghế có ghế (mỗi bạn ngồi ghế)? KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 10/20 - Mã đề thi 101 A 24 B 120 C D Lời giải Đáp án B 5! = 120 □ Câu 22 Cho hình lăng trụ đứng ABC.A′ B′ C ′ có AA′ = a Khoảng cách hai đường thẳng AB A′ C ′ a A B a C 2a D Lời giải Đáp án B d( AB, A′ C ′ ) = AA′ □ Câu 23 Trong không gian Oxyz, cho đường thẳng (d) : A (−1; 0; 7) B (−1; 0; −7) x+3 y−2 z−1 = = Điểm sau thuộc (d)? −1 C (−1; 1; 7) D (1; 0; 7) Lời giải Đáp án A (−1; 0; 7) ∈ (d) □ Câu 24 Trong không gian Oxyz, cho mặt phẳng ( P) : x − 3y + 5z − = Một véctơ pháp tuyến ( P) D (0; −3; 5) A (1; 3; 5) B (1; −3; 5) C (−3; 5; −3) Lời giải Đáp án B Véctơ pháp tuyến (1; −3; 5) □ Câu 25 Trong không gian Oxyz, cho M = (1; 3; −1) N = (−1; 1; 0) Độ dài đoạn thẳng MN √ √ √ A B 11 C 2 D q Lời giải Đáp án D MN = (−1 − 1)2 + (1 − 3)2 + (0 − (−1))2 = □ → − → − − → − → → → Câu 26 Trong không gian Oxyz, cho − u = (2 i − k ) − ( i − j ) Tọa độ − u A (1; −3; −1) B (2; −1; 0) C (2; 3; −1) D (1; 3; −1) → → − → − − → − → − → − → − → Lời giải Đáp án D − u = (2 i − k ) − ( i − j ) = i + j − k = (1; 3; −1) □ Câu 27 Cho khối trụ có bán kính đáy R chiều cao 2R Tính thể tích khối trụ A πR2 B 2πR2 C πR3 D 2πR3 Lời giải Đáp án D Áp dụng cơng thức thể tích khối trụ ta có V = 2R · πR2 = πR3 Câu 28 Cho mặt cầu (S) có đường kính AB = cm Tính diện tích mặt cầu (S) A 64π cm3 B 16π cm2 C 16π cm3 KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ □ D 64π cm2 Trang 11/20 - Mã đề thi 101 AB Lời giải Đáp án B Diện tích mặt cầu 4π = 16π cm2 □ Câu 29 Hàm số nghịch biến R? x−2 A y = − x4 + x2 B y= C y = x3 + x D y = −3x3 − 3x x+1 Lời giải Đáp án D y = −3x3 − 3x ⇒ y′ = −9x2 − = −3 x2 + ≤ ∀ x Nên hàm số nghịch biến R □ Câu 30 Cho hàm số y = f ( x ) = ax4 + bx2 + c, ( a, b, c ∈ R ) có đồ thị đường cong hình bên Tìm tất giá trị tham số thực m để hàm số y = f ( x − m) đạt cực tiểu x = " m=5 A B m = C m = D m = m=1 Lời giải Đáp án A Dựa vào đồ thị, ta thấy hàm " tiểu x = ±2 " số f ( x ) đạt cực m=1 3−m = ⇔ Vậy để hàm số y = f ( x − m) đạt cực tiểu x = ⇔ m=5 − m = −2 Câu 31 Với giá trị dương tham số m, hàm số f ( x ) = −2? A m = B m = □ x + m2 có giá trị lớn đoạn [0; 1] x−2 C m = D m = −2 − m2 m2 f x = f = − < 0, ∀ x ∈ 0; suy max Lời giải Đáp án C Ta có y′ = ( ) ( ) [ ] x ∈[0;1] ( x − 2)2 m2 = −2 ⇔ m2 = ⇒ m = (vì m > 0) □ Khi − Câu 32 Cho hàm số y = 2x + ln (1 − 2x ) Gọi M m giá trị lớn giá trị nhỏ hàm số −1; Khi M + m 3 − ln A B −2 + ln C D − + ln 2 Lời giải Đáp án B Tập xác định: D = −∞; 2 4x Ta có: y′ = − = y′ = ⇔ x = ∈ [−1; 0] − 2x 2x − 1 = − ln Khi y (−1) = −2 + ln 3; y (0) = 0, y Vậy M = m = −2 + ln Suy M + m = −2 + ln □ KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 12/20 - Mã đề thi 101 Câu 33 Gọi z1 nghiệm phức có phần ảo dương phương trình 2z2 − 2z + = Mơ đun + i2020 z1 z1 √ √ √ 10 130 A 10 B C 13 D 130 10 z= + i 2 Lời giải Đáp án D Phương trình: 2z2 − 2z + = ⇔ z= − i 2 Từ giả thiết ta có z1 = + i 2 − 3i + 3i 2020 + 3i +i = + = + i Khi + 3i 10 10 √ s 2 2 9 7 130 2020 + = □ z1 = + i = Vậy + i z1 10 10 10 10 10 √ Câu 34 Nếu A Z [ f ( x ) + g( x )]dx = B Z [3 f ( x ) − 2g( x )]dx = C Z [ f ( x ) + 6g( x )] dx D Lời giải Đáp án B Đặt A = Ta có = Z [ f ( x ) + g( x )]dx = Z0 Z Z f ( x )dx B = f ( x )dx + Z Z Z g( x )dx g( x )dx = A + B (1) Z g( x )dx = 3A − 2B (2) f ( x )dx − [3 f ( x ) − 2g( x )]dx = 0 A= A+B = ⇔ Từ (1) (2), ta có hệ phương trình B= 3A − 2B = 5 Z Lại có = Vậy 0 [ f ( x ) + 6g( x )] dx = A + 6B = □ Câu 35 Lập số tự nhiên có chữ số thuộc tập hợp X = {0; 1; 2; 3; 4; 5; 6} Lấy ngẫu nhiên số, tính xác suất để số lấy số chẵn có chữ số đơi khác 5 1600 30 A B C D 12 14406 343 2401 Lời giải Đáp án C Gọi A biến cố "Số lấy số chẵn có chữ số đôi khác nhau" n Ω = · 74 n A = 4A46 − 3A35 30 nA = P( A) = nΩ 343 □ Câu 36 Cho chóp S.ABC có SA vng góc với đáy, SA = AB = a Tính góc đường thẳng SB mặt phẳng ( ABC ) A 75◦ B 45◦ C 30◦ D 60◦ KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 13/20 - Mã đề thi 101 Lời giải Đáp án B [ = 45◦ (SB, ( ABC )) = SBA □ y+1 z+1 x−2 = = Gọi M1 ( a1 ; b1 ; c1 ) M2 ( a2 ; b2 ; c2 ) −3 hai điểm phân biệt thuộc đường thẳng (d) cho khoảng cách từ chúng đến mặt phẳng (Oyz) Tính c1 + c2 14 A − B 10 C D 3 Câu 37 Trong mặt phẳng Oxyz, cho đường thẳng (d) : Lời giải Đáp án A Lấy M(2 + 3t; −1 − 3t; −1 + 2t) ∈ (d) Khoảng cách từ M đến (Oyz) |2 + 3t| " t=1 + 3t = ⇔ Xét phương trình |2 + 3t| = ⇔ + 3t = −5 t=− 14 14 =− Suy c1 + c2 = −1 + − − 3 □ Câu 38 Trong khơng gian Oxyz, phương trình mặt phẳng vng góc với trục Ox qua điểm M (2; −1; 3) A x + = B x − = C x = D x − = → Lời giải Đáp án D Do ( P) ⊥ Ox, nên véctơ pháp tuyến ( P) − n = (1; 0; 0) Vậy phương trình mặt phẳng ( P) 1( x − 2) = ⇔ x − = □ Câu 39 Cho f ( x ) = x3 − 3x2 + Phương trình A B q f ( f ( x ) + 1) + = f ( x ) + có số nghiệm thực C D Lời giải Đáp án A Đặt t = f"( x ) + ⇒ t = x3 − 3x2 + (∗) x=0 Ta có, bảng biến thiên Suy t′ = 3x2 − 6x Khi t′ = ⇔ x=2 x t ′ −∞ + +∞ − + +∞ t −∞ KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC −2 http://tuyensinh.hdu.edu.vn/ Trang 14/20 - Mã đề thi 101 q Khi f ( f ( x ) + 1) + = f ( x ) + trở thành: ( ( q t ≥ −1 t ≥ −1 ⇔ f (t) + = t + ⇔ t3 − 4t2 − 2t + = f (t) + = t2 + 2t + t ≥ −1 t = a ∈ (−1; 0) t = a ∈ (−1; 0) ⇔ t = b ∈ (0; 1) ⇔ t = b ∈ (0; 1) t = c ∈ (4; 5) t = c ∈ (4; 5) Từ bảng biến thiên ta có +) Với t = a ∈ (−1; 0), phương trình (*) có nghiệm phân biệt +) Với t = b ∈ (0; 1), phương trình (*) có nghiệm phân biệt khác nghiệm +) Với t = c ∈ (4; 5), phương trình (*) có nghiệm khác nghiệm Vậy phương trình cho có nghiệm □ Câu 40 Tổng S tất nghiệm thuộc khoảng (0; 4π ) phương trình 2022sin x − 2022cos A S = 18π B S = 8π C S = 7π D S = 16π 2x = ln (cot x ) Lời giải Đáp án C Điều kiện cot x > Ta có 2022sin x − 2022cos 2x = ln (cot x ) ⇔2022sin x − 2022 = ln cos2 x − ln sin2 x 2 ⇔2022sin x + ln sin2 x = 2022cos x + ln cos2 x cos2 x (1) Xét hàm số f (t) = 2022t + ln t với t > f ′ (t) = 2022t ln 2022 + > , ∀ t > ⇒ hàm số f (t) đồng biến khoảng (0; +∞) t π kπ , k ∈ Z Khi (1) ⇔ f sin x = f cos2 x ⇔ sin2 x = cos2 x ⇔ cos 2x = ⇔ x = + π Do cot x > nên x = + kπ, k ∈ Z π 5π 9π 13π ; ; : Suy S = 7π Mà x ∈ (0; 4π ) suy x ∈ 4 4 □ Câu 41 Cho hàm số y = f ( x ) có đạo hàm f ′ ( x ) = x2 − 3x + 2, ∀ x ∈ R Biết F ( x ) nguyên hàm hàm số f ( x ) đồ thị hàm số F ( x ) có điểm cực trị M(0; 2) Khi F (1) 17 31 17 A B C D − 12 12 12 12 ′ F (0) = f (0) = Lời giải Đáp án C Đồ thị hàm số F ( x ) đạt cực trị điểm M (0; 2) ⇒ F (0) = Z Z x3 3x2 Ta có: f ( x ) = f ′ ( x )dx = x2 − 3x + dx = − + 2x + C x3 3x2 − + 2x Do f (0) = ⇒ C = Vậy f ( x ) = Z Z Z 1 x 3x2 31 Mà f ( x )dx = F (1) − F (0) Suy F (1) = f ( x )dx + F (0) = − + 2x dx + = □ 12 0 KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 15/20 - Mã đề thi 101 Câu 42 Cho hàm số f ( x ) = x3 + ax2 + bx + c ( a, b, c ∈ R ) có hai điểm cực trị −1 Gọi y = g( x ) hàm số bậc hai có đồ thị cắt trục hồnh hai điểm có hồnh độ trùng với điểm cực trị f ( x ), đồng thời có đỉnh nằm đồ thị f ( x ) với tung độ Diện tích hình phẳng giới hạn hai đường y = f ( x ) y = g( x ) gần với giá trị đây? A 10 B 12 C 13 D 11 Lời giải Đáp án B Gọi I toạ độ đỉnh đồ thị hàm số g( x ), dễ thấy I (0; 2) g( x ) = −2( x − 1)( x + 1) hay g( x ) = −2x2 + Ta có: f ′ ( x ) = 3x2 + 2ax + b a=0 − 2a + b = ⇒ f ( x ) = x3 − 3x + c ⇔ Theo ra, ta có: b = −3 + 2a + b = Vì I thuộc đồ thị f ( x ), nên c = ⇒ f ( x ) = x3 − 3x + x = −3 Xét f ( x ) − g( x ) = x3 + 2x2 − 3x = ⇔ x = x=1 Diện tích hình phẳng cần tìm S= Z −3 | x3 + 2x2 − 3x |dx + Z x3 + 2x2 − 3x dx = ≈ 11,8 □ Câu 43 Trên tập hợp số phức, xét phương trình z2 − 2mz + 6m − = (m tham số thực) Có giá trị nguyên m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 · z1 = z2 · z2 ? A B C D Lời giải Đáp án D Ta có ∆′ = m2 − 6m + Phương trình có hai nghiệm phân biệt nên xảy hai trường hợp: - Nếu ∆′ > ⇔ m ∈ (−∞; 1) ∪ (5; +∞) phương trình có hai nghiệm thực phân biệt z1 , z2 z1 = z1 ; z2 = z2 nên z1 = z2 (ko thoả mãn), 2 z1 · z1 = z2 · z2 ⇔ z1 = z2 ⇔ z1 = −z2 ⇔ z1 + z2 = ⇔ m = - Nếu ∆′ < ⇔ m ∈ (1; 5), phương trình có hai nghiệm phức hai số phức liên hợp Khi z1 = z2 ; z1 = z2 nên z1 z1 = z2 z2 ⇔ z1 z2 = z1 z2 với m ∈ (1; 5) Vậy có giá trị nguyên m thoả mãn tốn □ Câu 44 Cho hình lăng trụ ABC.A′ B′ C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ xuống mặt phẳng ( ABC ) trung điểm đoạn AB Mặt bên ( AA′ C ′ C ) tạo với đáy góc 30◦ Thể tích khối lăng trụ ABC.A′ B′ C ′ √ √ 3a3 3a3 a3 a3 A B C D 16 16 48 Lời giải Đáp án C Gọi I trung điểm BC, K trung điểm AI, H trung điểm AB KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 16/20 - Mã đề thi 101 Ta có A′ H ⊥( ABC ) ⇒ A′ H ⊥ AC Tam giác ABC nên BI ⊥ AC, HK đường trung bình tam giác ABI nên HK ⊥ AC Từ AC ⊥ A′ HK ⇒ góc mặt phẳng ( ABC ) mặt phẳng ( AA′ C ′ C ) ′ KH ⇒ A ′ KH = 30◦ \ \ góc A √ a BI a ◦ ′ ◦ tan 30 = √ = Do đó, A H = HK tan 30 = 4 3√ √ 3 a2 a S△ ABC = Vậy VABC.A′ B′ C′ = A′ H.S△ ABC = 16 □ y+1 z−1 x−1 = = mặt phẳng ( P) : x + y + z + = 2 ′ Gọi (d ) hình chiếu vng góc (d) lên mặt phẳng ( P) Lấy M( a; b; 1) thuộc (d′ ) Tính 2a + 3b A −7 B −11 C −4 D −9 Câu 45 Trong không gian Oxyz, cho đường thẳng (d) : Lời giải Đáp án B Gọi ( Q) mặt phẳng chứa đường thẳng (d) vng góc với ( P) Khi (d′ ) = ( P) ∩ ( Q) → → → Véctơ pháp tuyến ( Q) − n Q = [− u d, − n P ] = (1; −1; 0) có (1; −1; 1) ∈ ( Q) Phương trình mặt phẳng ( Q( ) x − y − = ( ( a = −1 a−b−2 = x−y−2 = ⇒ 2a + 3b = −11 ⇔ ⇒ Tọa độ M nghiệm hệ b = −3 a+b+4 = x+y+z+3 = □ ′ Câu 46 Cho hàm đa thức y = f x2 + 2x có đồ thị cắt trục Ox điểm phân biệt hình vẽ Hỏi có bao nhiêu giá trị tham số m với 2022m ∈ Z để hàm số g ( x ) = f x2 − | x − 1| − 2x + m có điểm cực trị? A 2020 B 2023 C 2021 D 2022 Lời giải Đáp án C Ta có: ′ f x2 + 2x = (2x + 2) f ′ x2 + 2x = a ( x + 3) ( x + 2) ( x + 1) ( x ) ( x − 1) ( a > 0) a a x + 2x − x2 + 2x ⇒ f ′ x2 + 2x = ( x + 3) ( x + 2) x ( x − 1) = 2 a (t − 3) t Ta có g ( x ) = f x2 − | x − 1| − 2x + m = f | x − 1|2 − | x − 1| + m − Đặt t = x2 + 2x ⇒ f ′ (t) = KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 17/20 - Mã đề thi 101 Ta thấy g (2 − x ) = g ( x ), ∀ x ∈ R nên đồ thị hàm số y = g ( x ) nhận đường thẳng x = làm trục đối xứng Do số điểm cực trị hàm số g ( x ) 2a + với a số điểm cực trị lớn hàm số g ( x ) Theo ta có 2a + = ⇔ a = Vì ta cần tìm m để hàm số g ( x ) có điểm cực trị lớn Khi x > g ( x ) = f x2 − 4x + m + x=2 ′ ′ ′ g ( x ) = (2x − 4) f x − 4x + m + , g ( x ) = ⇔ x − 4x + m + = (1) Đặt u ( x ) = x2 − 4x + m + 2, ta có bảng biến thiên x u( x ) x2 − 4x + m + = (2) +∞ +∞ m−1 m−2 Yêu cầu tốn trở thành tìm m để phương trình (1), (2) có nghiệm phân biệt khác 2, điều xảy m − < < m − ⇔ < m < 2, suy 2022 < 2022m < 4044 ⇒ 2022m ∈ {2023; 2024; ; 4043} , có 2021 giá trị m thỏa mãn toán □ Câu 47 Cho x số nguyên dương y số thực Có tất cặp số ( x ; y) thỏa mãn A 10 ln (1 + x + 2y) = 2y + 3x − 10? B Vô số C 11 D x+1 Lời giải Đáp án D Điều kiện: + x + 2y > ⇔ y > − x Ta chứng minh e ≥ x + 1, ∀ x ∈ R Xét hàm số y = g ( x ) = e x − x − ⇒ g′ ( x ) = e x − = ⇔ x = Bảng biến thiên: x y ′ −∞ +∞ +∞ − + +∞ y = g( x ) Suy g ( x ) ≥ ∀ x ∈ R ⇔ e x ≥ x + ∀ x ∈ R Ta có: ln (1 + x + 2y) = 2y + 3x − 10 ⇔ + x + 2y = e2y+3x−10 ≥ (2y + 3x − 10) + ⇔ x ≤ Do x ∈ N ∗ , nên x ∈ {1; 2; 3; 4; 5} Lại có: ln (1 + x + 2y) = 2y + 3x − 10 ⇔ ln (1 + x + 2y) − 2y −3x + 10 = ⇔ f (y) = x+1 ; +∞ Xét hàm số f (y) = ln (1 + x + 2y) − 2y − 3x + 10 khoảng − 2 x x+1 Suy f ′ (y) = − 2; f ′ (y) = ⇔ y = − ∈ − ; +∞ + x + 2y 2 Bảng biến thiên hàm số f (y) = ln (1 + x + 2y) − 2y − 3x + 10 KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 18/20 - Mã đề thi 101 y f ′ (x) − x+1 x − + 10 − 2x f (x) +∞ − −∞ −∞ Dựa vào bảng biến thiên ta nhận thấy: Với giá trịx ∈ {1; 2; 3; 4}, phương trình ln (1 + x + 2y) − 2y − 3x + 10 = theo ẩn y có nghiệm phân biệt Với x = phương trình ln (1 + x + 2y) − 2y − 3x + 10 theo ẩn y có nghiệm Vậy có nghiệm ( x; y) thỏa mãn toán □ Câu 48 Cho số phức z thoả mãn iz.z + (1 + 2i )z − (1 − 2i )z − 4i = Giá trị lớn P = |z + + 2i | + |z + − i | gần số sau đây? A 7,4 B 4,6 C 4,2 D 7,7 Lời giải Đáp án D Giả sử z = x + yi, ( x, y ∈ R ) Ta có iz.z¯ + (1 + 2i )z − (1 − 2i )z¯ − 4i = ⇔i ( x + yi )( x − yi ) + (1 + 2i )( x + yi ) − (1 − 2i )( x − yi ) − 4i = ⇔i x2 + y2 + ( x − 2y) + (2x + y)i − ( x − 2y) − (−2x − y)i − 4i = ⇔ x2 + y2 + 4x + 2y − = (2) Suy ra, tập hợp số phức z có điểm biểu diễn thuộc đường trịn (C ) có tâm I (−2; −1), bán kính R = Lại có P = |z + + 2i | + |z + − i | = |( x + 1) + (y + 2)i | + |( x + 4) + (y − 1)i | q q 2 = x + y + 2x + 4y + + x2 + y2 + 8x − 2y + 17 q q Kết hợp với (2) ta P = − 2( x − y) + 21 + 4( x − y) √ √ 21 Đặt t = x − y P = f (t) = − 2t + 21 + 4t với t ∈ − ; Khảo sát hàm số f (t) hoăc áp dụng bất đẳng thức Bunhiacopski, ta s √ s √ 26 21 21 P = − 2t + + 2t ≤ (1 + 2) + ≈ 7,65 = 2 √ √ −7 ± 217 −17 ± 217 +i Dấu xảy t = , từ tính z = 8 □ x+1 y−1 z+2 x−1 y+3 z−1 = = , ( d2 ) : = = −1 2 → điểm A(4; 1; 2) Gọi ∆ đường thẳng qua A cắt d1 cách d2 khoảng lớn Lấy − u = ( a; 1; c) → véctơ phương ∆ Độ dài − u √ √ √ √ B 86 C D 85 A Câu 49 Trong không gian Oxyz, cho hai đường thẳng (d1 ) : KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ Trang 19/20 - Mã đề thi 101 Lời giải Đáp án B Gọi H hình chiếu A lên d2 , ∆ nằm mặt phẳng ( P) qua A nhận −→ AH véctơ pháp tuyến → → → Gọi ( Q) mặt phẳng chứa A (d1 ) Khi ∆ = ( P) ∩ ( Q) ⇒ − u ∆ = [− n P, − n Q ] −→ Giả sử H (1 + t; −3 + 2t; + 3t) ⇒ AH = (t − 3; 2t − 4; 3t − 1) −→ −→ → − → n P = (1; 1; −1) u d2 = (1; 2; 3) ⇒ t − + 4t − + 9t − = ⇔ t = ⇒ AH = (−2; −2; 2) ⇒ − Ta có AH ⊥ − u d2 , → −→ − → − → − → Lấy N (−1; 1; −2) ∈ (d1 ) ⇒ AN = (−5; 0; −4) ⇒ √n Q = [ u d1 , AN ] = (4; −2; −5) → → → → Suy − u ∆ = [− n P, − n Q ] = (−7; 1; −6) ⇒ |− u | = 86 □ Câu 50 Cho hình nón đỉnh S có độ dài đường cao R đáy đường trịn tâm O bán kính R Gọi (d) tiếp tuyến đường tròn đáy A √ ( P) mặt phẳng chứa SA (d) Mặt phẳng ( Q) thay đổi qua S cắt đường tròn O hai điểm C, D cho CD = 3R Gọi α góc tạo ( P) ( Q) Tính giá trị lớn cos α √ √ √ √ 10 10 10 A B C D 10 5 10 Lời giải Đáp án A Gọi I trung điểm CD, OI ⊥ CD, hạ OK ⊥ SI K ⇒ OK ⊥ ( Q) Hạ OH ⊥ SA OH ⊥ ( P) ⇒ α = (OH, OK ) ⇒ OK2 + OH − HK2 Ta có ⇒ cos α = 2OH · OK p R OI · OS R R = √ ; OH = √ OI = OD2 − ID2 = , OK = √ OI + SO2 d HK2 = SK2 + SH − 2SK · SH cos ASI = SK2 + SH − 2SK · SH · √ √ SI + SA2 − AI 2SI · SA SO2 R SO2 R, SH = = √ , SK = = √ R SA SI Gọi M N trung điểm OA OB SA = Suy 2R, SI = AM ≤ AI ≤ AN SI + SA2 − AN SI + SA2 − AM2 ≤ HK2 ≤ SK2 + SH − 2SK · SH · 2SI · SA 2SI · SA ( √ √ √ √ ) √ + OH − HK 2 OK 3 10 10 10 10 10 2 ⇒ R ≤ HK ≤ R ⇒ − ≤ ≤ ⇒ cos α ≤ max ; = 10 10 10 2OH · OK 10 10 10 10 SK2 + SH − 2SK · SH · KHOA KHOA HỌC TỰ NHIÊN - TRƯỜNG ĐẠI HỌC HỒNG ĐỨC http://tuyensinh.hdu.edu.vn/ □ Trang 20/20 - Mã đề thi 101