Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 1; 0 < x < y Bất đẳng thức nào sau đây là đúng? A log1 a x > log[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C log x > log y a D ln x > ln y a Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ A R = 21 B R = 29 C R = D R = Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −15 C m = −2 D m = Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x3 C y = x2 − 2x + D y = −x4 + 3x2 − Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (2; −3; −1) C M ′ (−2; 3; 1) D M ′ (2; 3; 1) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; 6; 0) C (−2; 0; 0) D (0; −2; 0) Câu Kết đúng? R A sin2 x cos x = cos2 x sin x + C C R sin2 x cos x = −cos2 x sin x + C sin3 x + C R sin3 x D sin2 x cos x = + C B R sin2 x cos x = − Câu Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh nó√bằng A πRl B 2π l2 − R2 C 2πRl D π l2 − R2 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 300 C 1200 D 450 Câu 10 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = −5 C f (−1) = −3 D f (−1) = Câu 11 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = Câu 12 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Trang 1/5 Mã đề 001 Câu 13 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; 2) Câu 15 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể√tích khối nón √ 2π.a3 4π 2.a3 π.a3 π 2.a3 A B C D 3 3 R Câu 16 Tính nguyên hàm cos 3xdx 1 A sin 3x + C B sin 3x + C C − sin 3x + C D −3 sin 3x + C 3 Câu 17 Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 Câu 18 Kết đúng? R sin3 x A sin2 x cos x = − + C R C sin2 x cos x = −cos2 x sin x + C B R sin2 x cos x = cos2 x sin x + C D R sin2 x cos x = sin3 x + C Câu 19 Cho < a , 1; < x , Đẳng thức sau sai? A loga2 x = loga x B aloga x = x C loga x2 = 2loga x D loga (x − 2)2 = 2loga (x − 2) Câu 20 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > B m ≥ e−2 C m > 2e D m > e2 Câu 21 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường elip C Đường tròn D Đường parabol Câu 22 Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A B 3π C 3π D √ 3 Câu 23 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 30a3 B 60a3 C 20a3 D 100a3 Câu 24 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 25 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 3b2 − a2 3ab B VS ABC = A VS ABC = 12 q 12 √ √ a2 b2 − 3a2 3a b C VS ABC = D VS ABC = 12 12 Trang 2/5 Mã đề 001 Câu 26 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = (2x − 3)5 x −3x ln B y′ = (2x − 3)5 x −3x D y′ = x −3x ln x2 + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A 15 B C −2 D Câu 28 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho A(1; −2; 1), B(−2; 2; 1), C(1; −2; 2) Đường phân giác góc A tam giác ABC cắt mặt phẳng (P) : x + y + z − = điểm điểm sau đây: A (−2; 2; 6) B (1; −2; 7) C (−2; 3; 5) D (4; −6; 8) √ x− x+2 Câu 30 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 31 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 2)e x + C B (x − 1)e x + C C xe x + C D xe x−1 + C Câu 32 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π B V = C V = D V = A V = ′ ′ ′ Câu 33 Lăng trụ ABC.A B C có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 a 3a 13 B C D A 13 26 20 √ Câu 34 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình với x ∈ [ 1; 3] C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Câu 35 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ √ √ cách hai đường thẳng a 15 3a 30 3a 3a A B C D 10 Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 10 31 10 16 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 8π C 10π D 6π Câu 38 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −4 C D −2 → − → − Câu 40 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (1; 13; 16) A 2→ B 2→ → − → − → − → − C u + v = (3; 14; 16) D u + v = (2; 14; 14) Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = C P = + 2(ln a)2 D P = ln a Câu 42 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa2 17 πa 15 B C D A Câu 43 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ 3a a 15 3a 30 3a A B C D 10 R ax + b 2x Câu 44 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = ln a C P = + 2(ln a)2 D P = cos x π Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A ln + B ln + C ln + D 5 5 Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 3mn + n + A log2 2250 = B log2 2250 = m n 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 49 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 26abc D P = 2a+2b+3c Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B C 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − D R3 1 |x − 2x|dx = − (x2 − 2x)dx (x2 − 2x)dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001