1. Trang chủ
  2. » Giáo án - Bài giảng

Finding minimal Neural Network for Business

50 198 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 50
Dung lượng 742,38 KB

Nội dung

Finding Minimal Neural Networks for Business Intelligence Applications Rud y Setiono y School of Computing National University of Singapore d/d www.comp.nus.e d u.sg / ~ru d ys Outline • Introduction • Feed-forward neural networks • Neural network training and pruning • Neural network training and pruning • Rule extraction • Business intelligence applications • Conclusion • References References • For discussion: Time-series data mining 2 using neural network rule extraction Introduction • BusinessIntelligence(BI):Asetofmathematicalmodelsandanalysis methodologiesthatexploitavailabledatatogenerateinformationand knowledgeusefulforcomplexdecision‐makingprocess. • Mathematical models and analysis methodologies for BI include various • Mathematical  models  and  analysis  methodologies  for  BI  include  various  inductivelearningmodelsfordataminingsuchasdecisiontrees,artificial neuralnetworks,fuzzylogic,geneticalgorithms,supportvectormachines, andintelligentagents. 3 Introduction BI Analytical Applications include: • Customersegmentation:Whatmarketsegmentsdomycustomersfallinto, andwhataretheircharacteristics? • Propensitytobuy:Whatcustomersaremostlikelytorespondtomy promotion? • Frauddetection:HowcanItellwhichtransactionsarelikelytobefraudulent? Ct tt iti Whi h t i t ik f li? • C us t omera tt r iti on: Whi c h cus t omer i sa t r i s k o f  l eav i ng ? • Creditscoring:Whichcustomerwillsuccessfullyrepayhisloan,willnot defaultonhiscreditcardpayment? • Time series prediction 4 • Time ‐ series  prediction . Feed-forward neural networks A feed-forward neural network with one hidden layer: ibl l i • Inputvar i a bl eva l uesareg i ven totheinputunits. • Thehiddenunitscom p utethe p activationvaluesusinginput valuesandconnectionweight valuesW. • Thehiddenunitactivationsare giventotheoutputunits. • Decisionismadeattheoutput layeraccordingtotheactivation valuesoftheoutputunits. 5 Feed-forward neural networks Hiddenunitactivation: • Compute the weighted input: w 1 x 1 + w 2 x 2 + …. + w x Compute  the  weighted  input:  w 1 x 1 +  w 2 x 2 +  ….  +  w n x n • Applyanactivationfunctiontothisweightedinput,forexamplethelogistic fif( ) 1/(1 ) f unct i on f( x ) = 1/(1 +e ‐x ) : 6 Neural network training and pruning Neuralnetworktraining: • Findanoptimalweight(W,V). • Minimizeafunctionthatmeasureshowwellthenetworkpredictsthedesired outputs (class label) outputs  (class  label) • Errorinpredictionfori‐th sample: e = (desired output) – (predicted output) e i =  (desire d  output) i – (predicted  output) i • Sumofsquarederrorfunction: ∑ E(W,V)= ∑ e i 2 • Cross‐entropyerrorfunction: E(W,V)=‐ Σ d i logp i +(1‐ d i )log(1–p i ) d is the desired output either 0 or 1 7 d i is  the  desired  output , either  0  or  1 . Neural network training and pruning Neuralnetworktraining: • Many optimization methods can be applied to find an optimal (W,V): Many  optimization  methods  can  be  applied  to  find  an  optimal  (W,V): o Gradientdescent/errorbackpropagation o Conjugategradient o QuasiNewtonmethod o Geneticalgorithm Nt ki id d ll ti dif it di t tii dt d • N e t wor k  i scons id ere d we ll  t ra i ne d  if  it canpre di c t  t ra i n i ng d a t aan d cross‐ validationdata withacceptableaccuracy. 8 Neural network training and pruning Neuralnetworkpruning:Removeirrelevant/redundantnetworkconnections 1. Initialization. (a)LetWbethesetofnetworkconnectionsthatarestillpresentinthenetworkand (b)letCbethesetofconnectionsthathavebeencheckedforpossibleremoval (c) W corresponds to all the connections in the fully connected trained network and C is the empty set. (c)  W  corresponds  to  all  the  connections  in  the  fully  connected  trained  network  and  C  is  the  empty  set. 2.Saveacopyoftheweightvaluesofallconnectionsinthenetwork. 3.Findw∈ Wandw– Csuchthatwhenitsweightvalueissetto0,theaccuracyofthenetworkisleastaffected. 4.Settheweightfornetworkconnectionw to0andretrainthenetwork. 5.Iftheaccuracyofthenetworkisstillsatisfactory,then (a)Removew,i.e.setW:=W−{w}. (b)ResetC:=∅. (c) Go to Step 2. (c)  Go  to  Step  2. 6.Otherwise, (a)SetC:=C∪ {w}. 9 (b)RestorethenetworkweightswiththevaluessavedinStep2above. (c)IfC≠W, gotoStep2.Otherwise,Stop. Neural network training and pruning PrunedneuralnetworkforLEDrecognition(1) z 1 z 2 z 3 z 4 2 3 z 7 z 5 z 6 Howmanyhiddenunitsandnetworkconnectionsareneededtorecognizeall d l? 7 ten d igitscorrect l y ?  10 [...].. .Neural network training and pruning Pruned neural network for LED recognition (2) Raw data z1 z1 z3 z4 z5 z6 z7 Digit 1 1 1 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 2 1 0 1 1 0 1 1 3 0 1 1 1 0 1 0 4 1 1 0 1 0 1 1 5 1 1 0 1 1 1 1 6 1 0 1 0 0 1 0 7 1 1 1 1 1 1 1 8 1 1 1 1 0 1 1 A neural network A neural network for data analysis 1 1 Processed data z2 9 11 Neural network training and pruning Pruned neural network for LED recognition (3)... pruning Pruned neural network for LED recognition (3) Many different pruned neural networks  diff d l k can recognized all 10 digits correctly 12 Part 2. Novel techniques for data analysisand pruning Neural network training Pruned neural network for LED recognition (4): What do we learn? = 0 0 = 1 1 = 2 2 Must be on Must be off Classification rules can be  extracted from pruned networks t t df d t k... Part 2. Novel techniques for data analysis Business intelligence applications Experiment 1: CARD datasets • 30 neural networks for each of the data sets were trained l k f h f h d d • Neural network starts has one hidden neuron.  • The number of input neurons, including one bias input was 52 • The initial weights of the networks were randomly and  uniformly generated in the interval [ 1, 1] uniformly generated... NN (other) 13.95 18.02 18.02 NeuralWorks 14.07 14 07 18.37 18 37 15.13 15 13 NeuroShell 12.73 18.72 15.81 ( Pruned NN (θ1) 12.21 18.24 15.33 Pruned NN (θ2) 11.65 14.83 12.85 22 Part 2. Novel techniques for data analysis Business intelligence applications Experiment 1: CARD datasets • Neural networks with just one hidden unit and very few connections outperform more complex  neural networks! l t k! • Rule can be extracted to provide more understanding about the classification... d ti attributes C57,C58, . . .C63.  • 666 randomly selected samples for training and the remaining 334 samples for 666 randomly selected samples for training and the remaining 334 samples for testing.  26 Part 2. Novel techniques for data analysis Business intelligence applications Experiment 2:  German credit data set • A pruned network with one hidden unit and 10 input units was found to have  p... Operating Characteristic (ROC) Curve (AUC) is also computed 19 Part 2. Novel techniques for data analysis Business intelligence applications Experiment 1: CARD datasets • Where αi are the predicted outputs for Class 1 samples i 1 2 Where α are the predicted outputs for Class 1 samples i = 1,2,  … m and βj are predicted output for Class 0 samples, j = 1,2, … n.  • AUC is a more appropriate performance measure than ACC  when the class distribution is skewed... CARD3(TS) • θ is the cut‐off point for neural network classification: if output is greater than θ, than predict  Class 1, else predict Class 0.   • θ1 and θ2 are cut‐off points selected to maximize the accuracy on the training data and the test  data sets, respectively • AUCd = AUC for the discrete classifier = (1 – fp + tp)/2 21 Part 2. Novel techniques for data analysis Business intelligence applications... Part 2. Novel techniques for data analysis Business intelligence applications Experiment 3:  Bene1 and Bene2 credit scoring data sets • A pruned neural network for Bene1: 32 Part 2. Novel techniques for data analysis Business intelligence applications Experiment 3:  Bene1 and Bene2 credit scoring data sets • The extracted rules for Bene1 (partial):  Rule R: If Purpose = cash provisioning and Marital status = not married and Applicant ... k Doesn’t matter 13 Part 2. Novel techniques for data analysis Rule extraction Re‐RX: an algorithm for rule extraction from neural networks • New pedagocical rule extraction algorithm: Re‐RX (Recursive Rule Extraction) New pedagocical rule extraction algorithm: Re RX (Recursive Rule Extraction) • Handles mix of discrete/continuous variables without need for discretization of  continuous variables –... Similar scoring models are now also used to estimate the credit risk of entire loan  portfolios in the context of Basel II.  16 Part 2. Novel techniques for data analysis Business intelligence applications • Basel II capital accord: framework regulating minimum  capital requirements for banks • C t Customer data  credit risk score  h d t dit i k how much capital to  h it l t set aside for a portfolio of loans • Data collected from various operational systems in the bank, 

Ngày đăng: 28/04/2014, 10:17