Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết lu[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho sau sai? √ √ √5 hai số thực a, bthỏa√2mãn √a2> b > Kết luận √5 a A a < b B a > b C e > eb D a− < b− Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường elip D Đường parabol Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (2; −1; −2) D (−2; −1; 2) Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 4πR3 B πR3 C 2πR3 D 6πR3 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t m R dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 m+1 m+2 2m + A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+1 m+2 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 2π 3π B 3π C √ A D 3π 3 Câu Tính I = R1 √3 7x + 1dx 21 60 45 B I = C I = D I = 28 28 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A I = 20 A B C D Câu R10 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(x) − + C Câu 11 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x A B C D − 6 Câu 12 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x + x + mx − 1nằm bên phải trục tung 1 A m < B < m < C Không tồn m D m < 3 R Trang 1/5 Mã đề 001 √ Câu 13 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a B C D A a 2 Câu 14 Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 Câu 15 Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 2; 0) B A(1; 0; 3) C A(0; 0; 3) D A(0; 2; 3) Câu 16 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 0; 5) C (0; 1; 0) D (0; −5; 0) Câu 18 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C ln x > ln y D log x > log y a a ′ ′ ′ Câu 19 Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 30a3 C 20a3 D 100a3 ′ Câu 20 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ∈ (0; 2) D m ≥ A m ∈ (−1; 2) B −1 < m < Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + ty = + 2tz = Câu 22 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 2; 0) B (0; 6; 0) C (0; −2; 0) D (−2; 0; 0) Câu R23 Công thức sai? A R e x = e x + C C cos x = sin x + C R B R sin x = − cos x + C D a x = a x ln a + C Câu 24 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = (−∞; 2) Câu 25 Hàm số sau khơng có cực trị? A y = x2 C y = x4 + 3x2 + B y = cos x D y = x3 − 6x2 + 12x − Trang 2/5 Mã đề 001 Câu 26 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (−1; 1; 1) C (1; 1; 3) D (1; −2; −3) Câu 27 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C Câu 28 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m > B m > D x − (m − 2)x2 + (m − 2)x + m2 có 3 C m < D m > m < Câu 29 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B C D −6 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ D 8π A 4π B 2π C 3π Câu 31 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = −x4 − 2x2 − C y = x4 − 2x2 − D y = 2x4 + 4x2 + Câu 32 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = (−4; −1) B S = [−1; +∞) C S = (−∞; −4) ∪ (−1; +∞) D S = (−1; +∞) Câu 33 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 2a2 b 2a2 b 4a2 b A √ D √ B √ C √ 3π 3π 2π 2π Câu 34 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 35 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 36 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+2b+3c C P = 2a+b+c D P = 2abc Câu 37 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox C m > m < −1 D m < −2 A m > m < − B m > r 3x + Câu 38 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Trang 3/5 Mã đề 001 Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 40 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 27 23 25 29 B C D A 4 4 Câu 41 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 3 Câu 42 Hàm số hàm số sau đồng biến R 4x + A y = x4 + 3x2 B y = x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x √ 2x − x2 + Câu 43 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D π cos x F(− ) = π Khi giá trị Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 3π 6π 6π 6π A ln + B C ln + D ln + 5 5 Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + B log2 2250 = A log2 2250 = m n 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 46 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 14 B R = C R = 15 D R = Câu 48 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC √ DB′ Tính giá trị cos α √ √ 3 B C D A Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 6π C 8π D 12π −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (2; 14; 14) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001