Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tíc[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 √ Câu Cho lăng trụ ABC.A√′ B′C ′ có đáy a, AA′ = 3a Thể tích khối√lăng trụ cho là: C a3 D 3a3 A 3a3 B 3a3 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số nghịch biến (0; +∞) C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 D y = − A y = −1 B y = C y = R R R R 2 Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường tròn C Đường elip D Đường hypebol Câu R6 Công thức sai? A R sin x = − cos x + C C cos x = sin x + C R B R a x = a x ln a + C D e x = e x + C Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2) ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ad > B ac < C ab < D bc > √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D x = Câu Cho hàm số y = Câu 10 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 2 A 3(m ) B (m ) C (m ) D (m2 ) √ Câu 11 Đạo hàm hàm số y = log 3x − là: 6 A y′ = C y′ = D y′ = B y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 12 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B Không tồn m C m < D m < 3 √ sin 2x Câu 13 Giá trị lớn hàm số y = ( π) R bằng? √ A π B C π D Trang 1/5 Mã đề 001 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; −2) C I(1; 1; 2) D I(0; 1; 2) Câu 15 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5) Câu 16 Tập nghiệm bất phương trình log (x − 1) ≥ là: A [2; +∞) B (1; 2] C (−∞; 2] D (1; 2) Câu 17 Hàm số sau đồng biến R? A y = tan x C y = x2 √ √ B y = x2 + x + − x2 − x + D y = x4 + 3x2 + Câu 18 Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) Câu 19 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ bao nhiêu? √ B R = 29 C R = D R = A R = 21 Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 5; 0) D (0; 1; 0) Câu 21 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 C y = x − 2x + D y = x3 − 2x2 + 3x + Câu 22 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m > B m < C m ≥ D m ≤ Câu 23 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ D m ≥ A m ∈ (0; 2) B m ∈ (−1; 2) C −1 < m < Câu 24 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến R B Hàm số đồng biến R C Hàm số nghịch biến (0; +∞) D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 25 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 450 C 300 D 600 (2 ln x + 3)3 Câu 26 Họ nguyên hàm hàm số f (x) = : x ln x + (2 ln x + 3)4 (2 ln x + 3)2 (2 ln x + 3)4 A + C B + C C + C D + C 2 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: A 3π B 4π C 2π D 8π Câu 28 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Trang 2/5 Mã đề 001 Câu 29 Đồ thị hình bên đồ thị hàm số nào? 2x + 2x − −2x + A y = B y = C y = x+1 x−1 1−x 2x + x+1 y−6 z−1 x−3 = = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vuông góc với d1 cắt d2 có phương trình là: y−1 z−1 x y−1 z−1 x = = B = = A −1 −3 −1 x y−1 z−1 x−1 y z−1 C = = D = = −3 −1 −3 Câu 31 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 45.188.656 đồng B 48.621.980 đồng C 46.538667 đồng D 43.091.358 đồng D y = Câu 32 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 33,2 B 11 C 8,9 D 2,075 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 34 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = −x3 − x2 − 5x 4x + D y = x3 + 3x2 + 6x − C y = x+2 Câu 35 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (−3; 0) C (3; 5) D (1; 5) Câu 36 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B C 1 R3 R2 R3 1 R3 R2 R3 D |x2 − 2x|dx = (x2 − 2x)dx + R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − (x2 − 2x)dx |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx Câu 37 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 3a D 4a3 A 6a Câu 38 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + 2πR2 C S = πRl + πR2 D S = 2πRl + 2πR2 Câu 39 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = ln a C P = 2loga e D P = + 2(ln a)2 x2 + mx + Câu 40 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Không có m B m = C m = −1 D m = Trang 3/5 Mã đề 001 Câu 41 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 2 3 Câu 42 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ a 15 3a 3a 30 3a A B C D 10 Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = m = −10 D m = Câu 44 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 500π 125π A B C D 9 Câu 45 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 23 29 27 B C D A 4 4 Câu 46 Chọn mệnh đề mệnh đề sau: R R A sin xdx = cos x + C B x dx =5 x + C R R (2x + 1)3 e2x +C D (2x + 1)2 dx = + C C e2x dx = Câu 47 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 11 17 10 31 10 16 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 d Câu 48 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B a C a D 2a Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 A D = (1; +∞) 3x + x−1 B D = (−1; 4) C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) r Câu 50 Tìm tập xác định D hàm số y = log2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001