1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (895)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,42 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Giá trị nhỏ nhất của hàm số y = x x2 + 1 trên[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = − C y = D y = −1 R R R R 2 Câu Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số nghịch biến (0; +∞) B Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) D Hàm số đồng biến R Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = C R = 21 D R = Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C log x > log y D ln x > ln y a a → − Câu Trong không gian với hệ tọa độ Oxyz cho u (2; −2; 1), kết luận sau đúng? −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 D A −6 B C Câu Hàm số sau đồng biến R? A y = tan B y = x2 √ √ x D y = x4 + 3x2 + C y = x2 + x + − x2 − x + Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường elip D Đường trịn Câu Trong khơng gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m , B m = C m , −1 D m , Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 Câu 11 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D ′ Câu 12 Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu 13 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B m < C m < D < m < 3 Trang 1/5 Mã đề 001 Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh 2a Tính thể tích khối nón √ √ huyền 2π.a3 π.a3 4π 2.a3 π 2.a B C D A 3 3 log Câu 15 Cho a > a , Giá √ trị a A B √ a bằng? C D Câu 16 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ 2π 2.a2 π 3.a2 π 2.a2 A π 3.a B C D 3 Câu 17 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 18 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 12 (m) C S = 28 (m) D S = 24 (m) Câu 19 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường hypebol C Đường parabol D Đường elip Câu 20 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2) Câu 21 Hàm số sau đồng biến R? A y = x2 C y = x4 + 3x2 + √ √ B y = x2 + x + − x2 − x + D y = tan x Câu 22 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = x − 2x + 3x + D y = tan x Câu 23 thức sau đúng? √ Bất đẳng √ π e A ( + 1) > ( + 1) C 3π < 2π −e B 3√ > 2−e √ e π D ( − 1) < ( − 1) Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A ln x > ln y B loga x > loga y C log x > log y a D log x > log y a Câu 25 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3a b a2 3b2 − a2 A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 3ab C VS ABC = D VS ABC = 12 12 Câu 26 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A −6 B C D Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A 2x3 − 4x4 B x3 − x4 + 2x C x3 + − 4x + D x3 + − 4x 4 Trang 2/5 Mã đề 001 Câu 28 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S A 50 5dm2 B 75dm2 C 106, 25dm2 D 125dm2 Câu 29 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 2a2 b 4a2 b 4a2 b C √ B √ D √ A √ 3π 3π 2π 2π Câu 30 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN mặt phẳng (S BD) 10 A B C D 5 Câu 31 Cho hàm số y = x −3x Tính y′ A y′ = (x2 − 3x)5 x −3x ln C y′ = (2x − 3)5 x −3x B y′ = x −3x ln D y′ = (2x − 3)5 x −3x ln √ Câu 32 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S và√mặt phẳng (S AB) vng√góc với mặt phẳng đáy Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 B C a D A 2x − Câu 33 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±2 C m = ±1 D m = ±3 Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = − (x − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx x2 Câu 35 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 B C D A 128 32 64 r 3x + Câu 36 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−∞; −1] ∪ (1; +∞) C D = (−1; 4) ———————————————– D D = (−∞; 0) Câu 37 Chọn mệnh đề mệnh đề sau: R R e2x + C A sin xdx = cos x + C B e2x dx = Trang 3/5 Mã đề 001 C R dx =5 + C x x D R (2x + 1)3 (2x + 1) dx = +C d Câu 38 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ cạnh BC, S A = S C √ B a C a D 2a A a Câu 39 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = √ 2x − x2 + Câu 40 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 41 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 12π C 8π D 10π Câu 42 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a a 15 3a 3a 30 B C D A 10 2 Câu 43 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = 2loga e C P = D P = + 2(ln a)2 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + πR2 D S = πRl + 2πR2 √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình có nghiệm thuộc khoảng (−∞; 1) D Bất phương trình với x ∈ (4; +∞) Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 48 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 49 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = −1 Trang 4/5 Mã đề 001 Câu 50 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π B 6π C D A 5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 03/04/2023, 09:00