1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (895)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,23 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 ′ Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M đối xứng với M qua mặt phẳng Oxz? A M ′ (2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; −3; −1) D M ′ (−2; 3; 1) π x π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu √Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh B 2πRl C π l2 − R2 D πRl A 2π l2 − R2 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + 2 C y = x − 2x + D y = x3 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C log x > log y D ln x > ln y a a đúng? x B Hàm số đồng biến R D Hàm số nghịch biến (0; +∞) Câu Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến R C Hàm số đồng biến (−∞; 0) ∪ (0; +∞) R5 dx = ln T Giá trị T là: Câu Biết 2x − 1 √ A T = B T = C T = 81 D T = Câu 10 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b 2 C ln(ab ) = ln a + (ln b) D ln(ab) = ln a ln b Câu 11 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−3; 1) B Hàm số đồng biến khoảng (−3; 1) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (1; +∞) Câu 12 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = C yCD = 36 D yCD = 52 Câu 13 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 14 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m > B m ≥ C m ≥ D m ≥ −1 Trang 1/5 Mã đề 001 log a Câu 15 Cho a > a , Giá bằng? √ trị a A B C Câu 16 Đạo hàm hàm số y = log √2 3x − là: A y′ = C y′ = B y′ = (3x − 1) ln (3x − 1) ln 3x − ln √ D D y′ = 3x − ln Câu 17 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường hypebol B Đường elip C Đường parabol D Đường tròn Câu 18 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; 6; 0) C (0; 2; 0) D (0; −2; 0) √ Câu 19 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hoành Tìm thể tích V khối trịn xoay tạo thành 10π π D V = A V = B V = π C V = 3 Câu 20.√ Cho hai số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √5 √ − − A a b C ea > eb D a < b Câu 21 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > e2 B m > C m ≥ e−2 D m > 2e Câu 22 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = (−∞; 2) D S = [ -ln3; +∞) Câu 23 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 5; 0) C (0; −5; 0) D (0; 0; 5) √ ′ ′ ′ ′ Câu 24 √ 3Cho lăng trụ ABC.A √ B3C có đáy a, AA3 = 3a Thể tích khối3 lăng trụ cho là: A 3a B 3a C 3a D a + 2x Câu 25 Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C −4 < m < D m < x Câu 26 Họ nguyên hàm hàm số y = (x − 1)e là: A (x − 1)e x + C B xe x + C C xe x−1 + C D (x − 2)e x + C Câu 27 Cho hàm số y = x −3x Tính y′ 2 A y′ = (x2 − 3x)5 x −3x ln B y′ = (2x − 3)5 x −3x 2 C y′ = (2x − 3)5 x −3x ln D y′ = x −3x ln √ x− x+2 Câu 28 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D 2 Câu 29 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga (xy) = loga x.loga y B loga = a loga a = C loga xn = log x , (x > 0, n , 0) D loga x có nghĩa với ∀x ∈ R an Câu 30 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Trang 2/5 Mã đề 001 Câu 31 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hoành độ nhỏ A S = (−4; −1) B S = (−1; +∞) C S = (−∞; −4) ∪ (−1; +∞) D S = [−1; +∞) Câu 32 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 5 20 5πa3 A V = a B V = πa C V = πa D V = 6 1 + + + ta được: Câu 33 Rút gọn biểu thức M = loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) k(k + 1) A M = B M = C M = D M = 2loga x 3loga x loga x loga x Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Câu 35 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln Câu 36 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B 1 R3 R2 |x2 − 2x|dx = (x2 − 2x)dx + C R3 |x − 2x|dx = − D R3 R3 (x2 − 2x)dx R2 (x − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y + 2)2 + (z − 4)2 = Câu 38 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a < a x > ay ⇔ x < y r 3x + Câu 39 Tìm tập xác định D hàm số y = log2 x−1 A D = (1; +∞) B D = (−1; 4) ———————————————– C D = (−∞; −1] ∪ (1; +∞) D D = (−∞; 0) Câu 40 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ =√2a Gọi α số đo góc DB′ Tính giá trị cos α √ hai đường thẳng AC √ A B C D 2 Trang 3/5 Mã đề 001 Câu 41 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a 3a 30 3a a 15 B C D A 10 Câu 42 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 43 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 6π ln + 5 C π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π Câu 45 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 46 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = C m = D m = m = −10 Câu 47 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−1; 1) B (3; 5) C (1; 5) D (−3; 0) Câu 48 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A Câu 49 Biết B π R2 C −3 D C − ln D sin 2xdx = ea Khi giá trị a là: A B ln Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 06/04/2023, 13:37