Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Phương trình tiếp tuyến với đồ thị hàm số y =[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x −1+ D y = + C y = ln ln 5 ln Câu Số nghiệm phương trình x + 5.3 x − = A B C D Câu R3 Công thức sai? A R a x = a x ln a + C C sin x = − cos x + C R B R e x = e x + C D cos x = sin x + C Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = 12 √ 12 √ a2 3b2 − a2 3ab2 C VS ABC = D VS ABC = 12 12 Rm dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + m+2 m+1 2m + m+2 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( 2m + m+1 m+2 m+2 Câu Kết đúng? R R sin3 x sin3 x 2 A sin x cos x = + C B sin x cos x = − + C 3 R R 2 C sin x cos x = cos2 x sin x + C D sin x cos x = −cos2 x sin x + C Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (2; −3; −1) B M ′ (−2; 3; 1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab) = ln a ln b B ln( ) = b ln b 2 C ln(ab ) = ln a + ln b D ln(ab ) = ln a + (ln b)2 Câu 10 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 11 Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Trang 1/5 Mã đề 001 Câu 12 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ π 2.a2 π 3.a2 2π 2.a2 C D B A π 3.a 3 Câu 14 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π A V = B V = C V = D V = 5 √ sin 2x Câu 15 Giá trị lớn hàm số y = ( π) R bằng? √ A π B C D π Câu 16 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu 17 Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ 2 C πRl D π l2 − R2 A 2πRl B 2π l − R Câu 18 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) Câu R19 Công thức sai? A sin x = − cos x + C R C a x = a x ln a + C R B cos x = sin x + C R D e x = e x + C Câu 20 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + ty = + 2tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu 21 Tính I = R1 √3 7x + 1dx 45 A I = 28 20 21 D I = √ Câu 22 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành π 10π A V = π B V = C V = D V = 3 B I = 60 28 C I = Câu 23 Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường tròn B Đường parabol C Đường elip D Đường hypebol Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y a D log x > log y a Câu 25 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; 2; 0) D (0; −2; 0) Trang 2/5 Mã đề 001 2x − Câu 26 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ± B m = ±2 C m = ±1 D m = ±3 1 Câu 27 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x loga x 3loga x 2loga x Câu 28 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 8,9 D 11 Câu 29 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B [1; +∞) C (1; +∞) D (3; +∞) x2 + 2x là: Câu 30 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A 15 B C D −2 Câu 31 Đồ thị hình bên đồ thị hàm số nào? 2x + 2x + −2x + 2x − A y = B y = C y = D y = x+1 x+1 1−x x−1 Câu 32 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; −2; −3) C (1; 1; 3) D (−1; 1; 1) Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi √ là: B 4π C 2π D 8π A 3π Câu 34 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 35 Trong không gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ → − → − → − → C u + v = (1; 14; 15) D u + 3−v = (2; 14; 14) Câu 36 Hàm số hàm số sau đồng biến R 4x + A y = B y = −x3 − x2 − 5x x+2 C y = x3 + 3x2 + 6x − D y = x4 + 3x2 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = −4 − 5t z = − 5t z = − 5t z = + 5t Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √ với mặt phẳng (ABC), √diện tích tam giác S BC3 √ √ chóp S ABC 3 a a 15 a 15 a 15 A B C D 16 Trang 3/5 Mã đề 001 Câu 39 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 40 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −10 B m = m = −16 C m = D m = Câu 41 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 Câu 42 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 8π C 10π D 6π Câu 43 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 cos x π Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 6π 3π A B ln + C ln + D ln + 5 5 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = Câu 46 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m < −2 C m > m < − D m > m < −1 Câu 47 Gọi giá trị lớn giá trị nhỏ hàm số y = x − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 48 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m > −2 B m < C −4 ≤ m ≤ −1 D −3 ≤ m ≤ π R2 Câu 49 Biết sin 2xdx = ea Khi giá trị a là: A ln B C D − ln Câu 50 Chọn mệnh đề mệnh đề sau: R3 R3 R2 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = (x2 − 2x)dx + D R3 |x2 − 2x|dx = − (x2 − 2x)dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx - - - - - - - - - - HẾT- - - - - - - - - Trang 4/5 Mã đề 001