Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S )[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π C A 3π B √ D 3π 3 m R dx Câu Cho số thực dươngm Tính I = theo m? x + 3x + 2m + m+2 m+2 m+1 ) B I = ln( ) C I = ln( ) D I = ln( ) A I = ln( m+2 m+2 2m + m+1 Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 2a a 5a 3a A B C √ D √ 5 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = −1+ ln ln 5 ln ln x x +1− D y = + C y = ln ln 5 ln Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A −4 < m < B < m , C m < D ∀m ∈ R Câu Kết đúng? R R sin3 x A sin x cos x = − + C B sin2 x cos x = −cos2 x sin x + C R R sin3 x C sin x cos x = + C D sin2 x cos x = cos2 x sin x + C Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A πR3 B 6πR3 C 4πR3 D 2πR3 + 2x x+1 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = −x + 3x − D y = x3 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = 2F(2x − 1) + C Câu 10 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 11 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(3; 7; 4) C C(1; 5; 3) D C(−3; 1; 1) Trang 1/4 Mã đề 001 Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 2π B 3π C 4π D π Câu 13 Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + C y = x4 + 2x2 + D y = −x4 + ; y = 0; x = 0; x = Câu 14 Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A ln − B ln + C − ln − D − ln 2 2 Câu 15 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể √ tích3 khối nón √ π.a π 2.a 4π 2.a3 2π.a3 A B C D 3 3 √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ CC1 , BB1 Tính khoảng √ a a a 15 A a 15 C D B 3 Câu 17 Kết đúng? R R sin3 x A sin2 x cos x = − + C B sin2 x cos x = cos2 x sin x + C R R sin3 x C sin2 x cos x = −cos2 x sin x + C D sin2 x cos x = + C ax + b Câu 18 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ab < C ad > D ac < Câu 19 Kết luận sau tính đơn điệu hàm số y = đúng? x A Hàm số đồng biến (−∞; 0) ∪ (0; +∞) B Hàm số nghịch biến (0; +∞) C Hàm số nghịch biến R D Hàm số đồng biến R Câu 20 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = 13 C m = −2 D m = −15 Câu 21 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≥ B m > C m < D m ≤ Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; 5; 0) D (0; −5; 0) Câu 23 Cho < a , 1; < x , Đẳng thức sau sai? A loga (x − 2)2 = 2loga (x − 2) B aloga x = x C loga x2 = 2loga x D loga2 x = loga x Câu 24 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 ′ ′ ′ Câu 25 Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ 2a a 3a 5a A B √ C √ D 5 Trang 2/4 Mã đề 001 Câu 26 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C Câu 27 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m > B m < D x − (m − 2)x2 + (m − 2)x + m2 có 3 C m > D m > m < (2 ln x + 3)3 : x ln x + (2 ln x + 3)2 (2 ln x + 3)4 (2 ln x + 3)4 A + C B + C C + C D + C 8 Câu 29 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ 2 2 2 A (x + 1) + (y − 1) + (z − 2) = B (x + 1) + (y − 1) + (z − 2) = C (x − 1)2 + (y + 1)2 + (z + 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 Câu 28 Họ nguyên hàm hàm số f (x) = Câu 30 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b B √ C √ D √ A √ 3π 3π 2π 2π Câu 31 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m < −3 D m ≥ −8 2x − Câu 32 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±2 B m = ±3 C m = ± D m = ±1 B m ≤ −2 x2 + 2x là: Câu 33 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A B 15 C −2 D Câu 34 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D d Câu 35 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng √ cách từ S đến mặt phẳng (ABC) A a B 2a C a D a x2 Câu 36 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 32 64 128 √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − 1 x x x A y′ = √ B y′ = C y′ = D y′ = (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 38 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cạnh AB, AD Tính khoảng √ cách hai đường thẳng √ √ 3a 3a 30 3a a 15 A B C D 10 Trang 3/4 Mã đề 001 Câu 39 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 27 25 29 A B C D 4 4 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 31 11 17 10 16 21 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t Câu 42 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −4 B C −2 D Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 Câu 44 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B −2x − y + 4z − = C 2x + y − 4z + = D 2x + y − 4z + = π cos x F(− ) = π Khi giá trị Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = sin x + cos x F(0) bằng: 6π 6π 6π 3π A ln + B ln + C D ln + 5 5 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = −1 + 2t x = + 2t x = + 2t y = −2 + 3t y = + 3t y = −2 − 3t y = −2 + 3t A B C D z = + 5t z = −4 − 5t z = − 5t z = − 5t Câu 48 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 12a3 C 6a3 D 3a3 Câu 49 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 2 Câu 50 Cho biểu thức P = (ln a + loga e) + ln a − (loga e) , với < a , Chọn mệnh đề A P = B P = ln a C P = + 2(ln a)2 D P = 2loga e - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001