Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hai số thực a, bthỏa mãn a > b > 0 Kết lu[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √Cho hai√ số thực a, bthỏa mãn a > b > Kết luận nào√sau sai? √ √ √ A a− < b− B ea > eb C a < b D a > b Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; ln3) R1 √3 Câu Tính I = 7x + 1dx 45 20 B I = A I = 28 Câu Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + C I = 21 D I = 60 28 B y = x2 D y = x3 − 6x2 + 12x − Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3a b A VS ABC = B VS ABC = √ 12 √12 a2 3b2 − a2 3ab D VS ABC = C VS ABC = 12 12 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H2) C (H1) D (H3) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu A 4πR3 B πR3 C πR3 D πR3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (−2; 0; 0) B (0; −2; 0) C (0; 6; 0) D (0; 2; 0) √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ √ a a 15 a C A B a 15 D 3 Câu 10 Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + ln b B ln(ab) = ln a ln b a ln a C ln( ) = D ln(ab2 ) = ln a + (ln b)2 b ln b Câu 11 Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln C ln + D ln − A − ln − 2 2 Câu 12 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Trang 1/4 Mã đề 001 Câu 13 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD √ có chiều cao chiều√cao tứ diện √ √ π 3.a2 π 2.a2 2π 2.a2 C D B A π 3.a 3 Câu 14 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 −z x y Câu 15 Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A Không tồn m B < m < C m < D m < 3 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) x Câu 18 Giá trị nhỏ hàm số y = tập xác định x +1 1 D y = − A y = −1 B y = C y = R R R R 2 Câu 19 √ tích xung quanh √ Hình nón có bán kính đáy R, đường sinh l diện 2 A π l − R B 2πRl C 2π l2 − R2 D πRl Câu 20 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu 21 Kết đúng? R R sin3 x 2 A sin x cos x = cos x sin x + C B sin x cos x = − + C 3 R R sin x C sin2 x cos x = + C D sin2 x cos x = −cos2 x sin x + C √ x Câu 22 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H4) C (H2) D (H1) Câu 23 Đồ thị hàm số sau có vô số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = D y = x3 − 2x2 + 3x + x−1 Câu 24 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu 25 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −2 D m = −15 Câu 26 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π π π 3π A V = B V = C V = D V = Trang 2/4 Mã đề 001 Câu 27 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 B V = a C V = D V = πa A V = πa 6 Câu 28 Cho a > 1, a , Tìm mệnh đề mệnh đề sau: A loga xn = log x , (x > 0, n , 0) B loga = a loga a = an C loga x có nghĩa với ∀x ∈ R D loga (xy) = loga x.loga y 1 Câu 29 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) 4k(k + 1) k(k + 1) k(k + 1) A M = B M = C M = D M = loga x loga x 2loga x 3loga x 1 Câu 30 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m < B m > C m > m < D m > Câu 31 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D √ Câu 32 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích khối chóp S ABC √ √ √ √ a3 a3 2a3 3 B A a C D 3 √3 a2 b Câu 33 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c D A B C − 3 Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = m n 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n √ Câu 35 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = √ C y′ = D y′ = 2 2(x − 1) ln (x − 1) ln (x − 1)log4 e x − ln Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = + 2t x = − 2t x = −1 + 2t y = + 3t y = −2 − 3t y = −2 + 3t y = −2 + 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t Câu 37 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D Câu 38 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3 Câu 39 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080255 đồng D 36080253 đồng Trang 3/4 Mã đề 001 Câu 40 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng √ cách hai đường√thẳng MN S C √ 3a a 15 3a 30 3a B C D A 2 10 Câu 41 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = ln a D P = 2loga e Câu 42 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = x+cos3x ln R ax + b 2x Câu 43 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D cos x π Câu 44 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A B ln + C ln + D ln + 5 5 2 x + mx + Câu 45 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C Không có m D m = Câu 46 Trong khơng gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = + 2t x = − 2t x = −1 + 2t x = + 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = − 5t z = + 5t z = −4 − 5t z = − 5t Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π C D A 6π B 5 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = 0.√ √ A R = B R = 15 C R = 14 D R = Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > m < − C m > D m < −2 Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ S A = 2a Gọi α số đo √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α 15 15 A B C D 10 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001