Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tính tổng tất cả các nghiệm của phương trình[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A B C D −6 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 0; 5) B (0; 5; 0) C (0; −5; 0) D (0; 1; 0) 2x x 2x Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C 4πR3 D πR3 A πR3 −x Câu Tìm tất giá trị tham số m để hàm số y = xe + mx đồng biến R A m > B m > e2 C m ≥ e−2 D m > 2e Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + C y = x4 + 3x2 + B y = x2 D y = tan x −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu Tính I = R1 √3 7x + 1dx 60 20 21 45 B I = C I = D I = 28 28 Câu Cho mãn a > b > Kết luận√nào sau√ sai? √ √ √5 hai số thực a, bthỏa √5 a A a < b B e > eb C a− < b− D a > b A I = Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ −1 B m > C m ≥ D m ≥ Câu 10 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A m < B Không tồn m C < m < D m < 3 R Câu 11 Tính nguyên hàm cos 3xdx 1 A − sin 3x + C B sin 3x + C C −3 sin 3x + C D sin 3x + C 3 Câu 12 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại √ tứ diện √ √ tiếp tam giác BCD có chiều cao chiều cao √ π 3.a2 2π 2.a2 π 2.a2 A B π 3.a C D 3 √ sin 2x Câu 13 Giá trị lớn hàm số y = ( π) trên√R bằng? A B π C π D Câu 14 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Trang 1/4 Mã đề 001 Câu 15 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 4m2 − m2 − m2 − 12 m2 − 12 A B C D 2m 2m m 2m Câu 16 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 17 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 Câu R18 Kết đúng? A sin2 x cos x = cos2 x sin x + C R sin3 x C sin x cos x = − + C sin2 x cos x = −cos2 x sin x + C R sin3 x D sin x cos x = + C B R Câu 19 Hình nón có bán kính √ đáy R, đường sinh l diện √ tích xung quanh 2 A πRl B π l − R C 2π l2 − R2 D 2πRl √ x Câu 20 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H4) B (H2) C (H1) D (H3) Câu 21 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 5; 0) D (0; 1; 0) Câu 22 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C ln x > ln y D log x > log y a a Câu 23 Một mặt cầu có diện tích 4πR thể tích khối cầu C πR3 D 4πR3 A πR3 B πR3 Câu 24 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 360 B 600 C 450 D 300 Câu 25 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 28 (m) B S = 20 (m) C S = 24 (m) D S = 12 (m) Câu 26 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) A B C D 4 4 Câu 27 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số h √ √ √ √ 2π − 3 π− 2π − A B C D 12 12 Câu 28 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Trang 2/4 Mã đề 001 Câu 29 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 √ x− x+2 Câu 30 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 31 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; 1; 3) B (−1; 1; 1) C (1; −1; 1) D (1; −2; −3) Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi √ là: A 3π B 8π C 4π D 2π Câu 33 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 6π(dm3 ) C 12π(dm3 ) D 54π(dm3 ) Câu 34 Hàm số hàm số sau đồng biến R A y = x4 + 3x2 B y = x3 + 3x2 + 6x − 4x + D y = −x3 − x2 − 5x C y = x+2 Câu 35 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 + sin 3x)5 x+cos3x ln B y′ = x+cos3x ln ′ x+cos3x C y = (1 − sin 3x)5 ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 36 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa2 15 πa 17 B C D A Câu 37 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc DB′ Tính giá trị cos α.√ √ hai đường thẳng AC √ 3 A B C D 2 x2 + mx + Câu 38 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C Không có m D m = Câu 39 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = m = −10 C m = D m = √ 2x − x2 + Câu 40 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 41 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) → − (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương u x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = + 3t y = −2 + 3t A B C D z = −4 − 5t z = + 5t z = − 5t z = − 5t Trang 3/4 Mã đề 001 Câu 42 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D → − → − Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ → − → − → − → C u + v = (1; 14; 15) D u + 3−v = (1; 13; 16) Câu 44 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π B C D 6π A 5 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y + 2)2 + (z − 4)2 = cos x π Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 3π 6π 6π 6π B ln + C D ln + A ln + 5 5 Câu 47 Tìm tất giá trị tham số m để hàm số y = x − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = m = −16 C m = m = −10 D m = √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − x x x B y′ = A y′ = √ C y′ = D y′ = (x − 1) ln (x − 1)log4 e 2(x − 1) ln x2 − ln Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + Câu 50 Biết π R2 (x2 − 2x)dx (x2 − 2x)dx sin 2xdx = ea Khi giá trị a là: A − ln B C D ln - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001