Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Một mặt cầu có diện tích bằng 4πR2thì thể tíc[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một mặt cầu có diện tích 4πR thể tích khối cầu A πR3 B πR3 C πR3 D 4πR3 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = −x4 + 3x2 − B y = x3 − 2x2 + 3x + C y = x2 − 2x + D y = x3 Câu Hàm số sau khơng có cực trị? A y = cos x C y = x2 B y = x3 − 6x2 + 12x − D y = x4 + 3x2 + Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(8; ; 19) B C(20; 15; 7) C C(6; 21; 21) D C(6; −17; 21) Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = 13 C m = −15 D m = −2 ax + b Câu Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A ab < B ac < C bc > D ad > Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B m ≥ C m ∈ (0; 2) D −1 < m < Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C loga x > loga y D log x > log y a a Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 10 Đạo hàm hàm số y = log √2 3x − là: 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 11 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh√huyền 2a Tính thể tích khối nón √ π.a3 π 2.a3 2π.a3 4π 2.a3 A B C D 3 3 Câu 12 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 A 3(m2 ) B (m2 ) C (m ) D (m2 ) Trang 1/4 Mã đề 001 Câu 13 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln( ) = B ln(ab2 ) = ln a + ln b b ln b C ln(ab) = ln a ln b D ln(ab2 ) = ln a + (ln b)2 Câu 14 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = −2 D yCD = 52 Câu 15 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π A V = B V = C V = D V = 5 √ x Câu 16 Tìm nghiệm phương trình x = ( 3) A x = B x = C x = −1 D x = Câu 17 Khối trụ có bán kính đáy chiều cao Rthì thể tích A 2πR3 B 4πR3 C 6πR3 D πR3 Câu 18 Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh nó√bằng A 2πRl B πRl C π l2 − R2 D 2π l2 − R2 Câu 19 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng√AB′ BC ′ √ a 5a 3a 2a D √ A B C √ 5 Câu 20.√ Cho hai số thực a, bthỏa mãn√ a > b > Kết luận √ √ √5 sau sai? a √5 − − 2 A a b C a < b D e > eb Câu 21 Hàm số sau cực trị? A y = x2 C y = cos x B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu 22 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ C m ∈ (−1; 2) D m ∈ (0; 2) A m ≥ B −1 < m < Câu 23 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = [ 0; +∞) D S = (−∞; ln3) Câu 24 Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R? A m > 2e B m ≥ e−2 C m > e2 D m > Câu 25 Số nghiệm phương trình x + 5.3 x − = A B C D (2 ln x + 3) Câu 26 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3) (2 ln x + 3) (2 ln x + 3)4 ln x + A + C B + C C + C D + C 2 8 Câu 27 Cho hàm số y = x −3x Tính y′ 2 A y′ = (2x − 3)5 x −3x ln B y′ = x −3x ln 2 C y′ = (x2 − 3x)5 x −3x ln D y′ = (2x − 3)5 x −3x Câu 28 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 2a2 b 4a2 b 4a2 b A √ B √ C √ D √ 3π 3π 2π 2π Trang 2/4 Mã đề 001 Câu 29 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 75dm2 B 106, 25dm2 C 125dm2 D 50 5dm2 Câu 30 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 2,075 C 33,2 D 8,9 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi là: √ A 2π B 8π C 4π D 3π Câu 32 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vuông góc với √ √ mặt phẳng đáy Tính cơsin góc hai mặt phẳng √ (SAC) (SBC) bằng? B C D A 2 Câu 33 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 + − 4x + C x3 − x4 + 2x D 2x3 − 4x4 4 Câu 34 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 21 10 16 11 17 10 31 B M( ; ; ) C M( ; ; ) D M( ; ; ) A M( ; ; ) 3 3 3 3 3 Câu 35 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính M + m A B C D Câu 36 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 37 Cho tứ diện DABC, tam giác ABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 3 Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối √ √ √ √ chóp S ABC 3 3 a 15 a a 15 a 15 A B C D 16 Câu 39 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa 17 πa2 17 A B C D r 3x + Câu 40 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (1; +∞) C D = (−∞; 0) D D = (−∞; −1] ∪ (1; +∞) Trang 3/4 Mã đề 001 R ax + b 2x Câu 41 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D x + mx + Câu 42 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = −1 C m = D m = Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y x2 + mx + Câu 45 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B m = −1 C m = D Khơng có m r 3x + Câu 46 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; −1] ∪ (1; +∞) B D = (1; +∞) C D = (−1; 4) D D = (−∞; 0) Câu 47 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 23 29 B C D A 4 4 Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D x Câu 49 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 32 64 128 3x Câu 50 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C m = −2 D Không tồn m - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001