Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho −→u ([.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? A R = 29 B R = 21 C R = D R = π x π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu Hàm số sau đồng biến R? A y = tan x C y = x2 B y = x√4 + 3x2 + √ D y = x2 + x + − x2 − x + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 20a3 D 60a3 R1 √3 Câu Tính I = 7x + 1dx 20 A I = B I = 60 28 C I = 21 D I = 45 28 Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = [ 0; +∞) B S = (−∞; ln3) C S = [ -ln3; +∞) D S = (−∞; 2) Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu 10 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 11 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 A B C D 2m 2m 2m m √ Câu 12 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (0; 1) B (1; +∞) C ( ; +∞) D (0; ) 4 Trang 1/4 Mã đề 001 √ Câu 13 Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B a C D A 2 Câu 14 Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 5 Câu 15 Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD và√có chiều cao chiều√cao tứ diện √ tiếp √ 2π 2.a π 2.a2 π 3.a2 A B C D π 3.a2 3 √ Câu √ 16 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 300 C 1200 D 600 √ x Câu 17 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H1) C (H2) D (H4) Câu 18 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −2 B m = 13 C m = D m = −15 Câu 19.√Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh A 2π l2 − R2 B πRl C π l2 − R2 D 2πRl Câu 20 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, đường cao hình chóp a Tính góc hai mặt phẳng (S AC) (S AB) A 600 B 360 C 450 D 300 Câu 21 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + 2ty = + tz = B x = + 2ty = + tz = − 4t C x = + 2ty = + tz = D x = + ty = + 2tz = Câu 22 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ D R = 29 A R = B R = C R = 21 Câu 23 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x A y = +1− B y = + ln ln 5 ln x x C y = −1+ D y = − ln ln 5 ln ln Câu 24 Cho a > 1; < x < y Bất đẳng thức sau đúng? A loga x > loga y B log x > log y C log x > log y a D ln x > ln y a ax + b có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ab < C ad > D ac < √ x− x+2 Câu 26 Đồ thị hàm số y = có tất tiệm cận? x2 − A B C D Câu 25 Cho hàm số y = Trang 2/4 Mã đề 001 Câu 27 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A 2x3 − 4x4 B x3 + − 4x C x3 − x4 + 2x D x3 + − 4x + 4 x−3 y−6 z−1 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vuông góc với d1 cắt d2 có phương trình là: y−1 z−1 x−1 y z−1 x = = B = = A −1 −3 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −3 −1 Câu 29 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 2a2 b 2a2 b 4a2 b 4a2 b B √ C √ A √ D √ 3π 3π 2π 2π x −2x +3x+1 Mệnh đề đúng? Câu 30 Cho hàm số f (x) = e A Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) B Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) Câu 31 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 5π 20 5πa3 5 πa B V = a C V = πa D V = A V = 6 √ Câu 32 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A a B C D Câu 33 Đồ thị hàm số sau có điểm cực trị: A y = x4 + 2x2 − B y = 2x4 + 4x2 + C y = −x4 − 2x2 − D y = x4 − 2x2 − Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − √ (x2 − 2x)dx (x2 − 2x)dx 2x − x2 + Câu 35 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 36 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 3mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n Trang 3/4 Mã đề 001 Câu 37 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), √ góc đường thẳng S B mp(S AC) Tính giá√trị sin α √ S A = 2a Gọi α số đo 15 15 B C D A 10 Câu 38 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 4a3 B 6a3 C 3a3 D 9a3 Câu 39 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường tròn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 500π 250π 400π 125π A B C D 9 Câu 40 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 10 16 21 11 17 10 31 A M( ; ; ) B M( ; ; ) C M( ; ; ) D M( ; ; ) 3 3 3 3 3 r 3x + Câu 41 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) ———————————————– B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) Câu 42 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x3 + 3x2 + 6x − 4x + C y = D y = x4 + 3x2 x+2 Câu 43 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng B 36080253 đồng C 36080255 đồng D 36080251 đồng Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A −2 B −4 C D Câu 45 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − 1 C R3 |x2 − 2x|dx = − D R3 |x2 − 2x|dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + R3 (x2 − 2x)dx x2 + mx + đạt cực tiểu điểm x = x+1 C Khơng có m D m = Câu 46 Tìm tất giá trị tham số m để hàm số y = A m = −1 B m = Trang 4/4 Mã đề 001