1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (601)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 122,74 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 2.√ Bất đẳng thức √ esau đúng? π A ( √3 + 1) > ( √ + 1) e π C ( − 1) < ( − 1) B 3π < 2π D 3−e > 2−e √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành? 10π π A V = π B V = C V = D V = 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 20a3 B 100a3 C 30a3 D 60a3 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m > e2 C m > D m ≥ e−2 Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hoành độ x = là: x x + B y = − A y = ln 5 ln ln x x C y = +1− D y = −1+ ln ln 5 ln ln Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = − 4t D x = + 2ty = + tz = Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 2; 0) C (−2; 0; 0) D (0; 6; 0) Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = 3 Câu 10 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 36 C yCD = D yCD = 52 Câu 11 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể √ tích3 khối nón √ 2π.a π 2.a π.a3 4π 2.a3 A B C D 3 3 Trang 1/4 Mã đề 001 Câu 12 Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 4π D 2π Câu 13 Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = −1 D f (−1) = 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng √ d = 1200 Gọi Câu 15 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A B C a 15 D 3 Câu 14 Cho hàm số y = Câu 16 Biết R5 A T = dx = ln T Giá trị T là: 2x − √ B T = C T = D T = 81 Câu 17 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = C m = −15 D m = −2 x Câu 18 Giá trị nhỏ hàm số y = tập xác định x +1 1 C y = −1 D y = A y = B y = − R R R R 2 Câu 19 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? B R = C R = D R = 21 A R = 29 Câu 20 Hình nón có bán kính đáy R, đường sinh l diện √ tích xung quanh √ 2 A 2πRl B πRl C 2π l − R D π l2 − R2 Câu 21 Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 600 B 300 C 360 D 450 Câu 22 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x A y = − B y = +1− ln ln 5 ln ln x x C y = + D y = −1+ ln 5 ln ln Câu 23 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 1; 0) D (0; 0; 5) Câu R24 Công thức sai? A cos x = sin x + C R C a x = a x ln a + C R B e x = e x + C R D sin x = − cos x + C Trang 2/4 Mã đề 001 Câu 25 Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 5a a 3a 2a C √ A √ B D 5 1 + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) B M = C M = loga x loga x Câu 26 Rút gọn biểu thức M = A M = k(k + 1) 3loga x D M = k(k + 1) 2loga x Câu 27 Cho tam giác ABC vuông A, AB = a, BC = 2a Tính thể tích khối nón nhận quay tam giác √ ABC quanh trục AB √ πa B 3πa3 C πa3 D πa3 A Câu 28 Đồ thị hàm số sau có điểm cực trị: A y = x4 − 2x2 − B y = 2x4 + 4x2 + C y = −x4 − 2x2 − D y = x4 + 2x2 − Câu 29 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ B m ≥ −8 C m < −3 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m ≤ −2 Câu 30 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 Câu 31 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung √ quanh diện tích mặt đáy 2là nhỏ nhất, S C 125dm D 75dm2 A 106, 25dm2 B 50 5dm2 x2 + 2x là: Câu 32 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ A B C −2 D 15 Câu 33 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính √ sin góc MN mặt phẳng (S BD) 10 A B C D 5 Câu 34 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = B m = C m = m = −16 D m = m = −10 Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ véc Câu 36 Trong khơng gian với hệ trục tọa độ Oxyz cho → −u + 3→ −v tơ 2→ → − −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) A u + 3→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 37 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 31π 32π A B 6π C D 5 Trang 3/4 Mã đề 001 Câu 38 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 39 Chọn mệnh đề mệnh đề sau: R R e2x + C A x dx =5 x + C B e2x dx = R R (2x + 1)3 C (2x + 1)2 dx = +C D sin xdx = cos x + C Câu 40 Hàm số hàm số sau có đồ thị hình vẽ bên D y = −2x4 + 4x2 A y = −x4 + 2x2 B y = −x4 + 2x2 + C y = x3 − 3x2 Câu 41 Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm A(1; 2; 3) −n (2; 1; −4) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 42 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080254 đồng C 36080255 đồng D 36080253 đồng Câu 43 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > B m > m < −1 C m < −2 D m > m < − ′ ′ ′ ′ Câu 44 Cho hình lăng trụ đứng ABCD.A B C D có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ 3 B C D A 2 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương →         x = −1 + 2t x = − 2t x = + 2t x = + 2t             y = + 3t y = −2 + 3t y = −2 + 3t y = −2 − 3t A  B  C  D           z = −4 − 5t  z = + 5t  z = − 5t  z = − 5t Câu 46 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) Giả sử phương trình mặt phẳng (P) có dạng khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) ax + by + cz + = Tính giá trị abc A B C −4 D −2 Câu 47 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C D 6π 5 Câu 48 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 r 3x + Câu 49 Tìm tập xác định D hàm số y = log2 x−1 A D = (−1; 4) B D = (−∞; 0) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) Trang 4/4 Mã đề 001

Ngày đăng: 01/04/2023, 09:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w