Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt c[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 29 C R = 21 D R = −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ Câu Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a a 2a C D √ A √ B 5 ′ ′ ′ Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D πR3 A 4πR3 B πR3 Câu Kết đúng? R R sin3 x A sin2 x cos x = cos2 x sin x + C B sin2 x cos x = − + C R R sin3 x C sin2 x cos x = + C D sin2 x cos x = −cos2 x sin x + C Câu Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − B y = x2 C y = cos x D y = x4 + 3x2 + Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m < D m > Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D −z x y Câu 10 Cho x, y, z ba số thực khác thỏa mãn = = 10 Giá trị biểu thức A = xy + yz + zxbằng? A B C D Câu 11 Đạo hàm hàm số y = log √2 3x − là: 2 6 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 12 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Trang 1/4 Mã đề 001 1 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 Câu 13 Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu 14 Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ π.a3 2π.a3 4π 2.a3 π 2.a3 A B C D 3 3 Câu 15 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < √ d = 1200 Gọi Câu 16 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a a 15 B a 15 C D A Câu 17 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ 3a b 3ab A VS ABC = B VS ABC = 12 12 q √ √ a2 b2 − 3a2 a2 3b2 − a2 C VS ABC = D VS ABC = 12 12 Câu 18.√ Cho hai số thực a, bthỏa mãn√ a > b > Kết luận √ √ √5 sau sai? a √5 − 2 − b C a < b D e > eb A a Câu 19 Hàm số sau khơng có cực trị? A y = cos x C y = x2 B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu 20 Một mặt cầu có diện tích 4πR2 thể tích khối cầu A πR3 B 4πR3 C πR3 D πR3 Câu 21 Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (0; −2; 0) C (−2; 0; 0) D (0; 2; 0) x Câu 22 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = − B y = −1 C y = D y = R R R R 2 Câu 23 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính qng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 24 (m) B S = 28 (m) C S = 20 (m) D S = 12 (m) Câu 24 Hàm số sau đồng biến R? A y = tan √ x √ C y = x2 + x + − x2 − x + B y = x4 + 3x2 + D y = x2 p Câu 25 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Trang 2/4 Mã đề 001 Câu 26 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 24π(dm3 ) B 6π(dm3 ) C 54π(dm3 ) D 12π(dm3 ) Câu 27 Cho hình chóp S.ABC có đáy ABC tam giác vng cân với BA = BC = a, S A = a vng góc với √ (SAC) (SBC) bằng? √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng B C D A 2 Câu 28 Một vật chuyển động với gia tốc a(t) = −20(1 + 2t)−2 Khi t = vận tốc vật 30 (m/s) Quãng đường vật sau giây gần với giá trị sau đây? A 50m B 49m C 47m D 48m Câu 29 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 13 3a 10 a A B C D 26 13 20 Câu 30 Cho hàm số y = x −3x Tính y′ A y′ = (2x − 3)5 x −3x ln C y′ = (2x − 3)5 x −3x B y′ = (x2 − 3x)5 x −3x ln D y′ = x −3x ln (2 ln x + 3)3 : x (2 ln x + 3)4 (2 ln x + 3)4 B + C C + C Câu 31 Họ nguyên hàm hàm số f (x) = A (2 ln x + 3)2 + C Câu 32 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m < −3 B m ≤ −2 D ln x + + C x3 − (m + 2)x2 + (m − 8)x + m5 nghịch C m ≤ D m ≥ −8 Câu 33 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 B C D A 24 12 Câu 34 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2abc C P = 2a+2b+3c D P = 26abc Câu 35 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 + sin 3x)5 x+cos3x ln cos x π Câu 36 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B C ln + D ln + 5 5 Câu 37 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = −1 + 2t x = + 2t x = − 2t x = + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = + 5t z = − 5t z = −4 − 5t z = − 5t Trang 3/4 Mã đề 001 Câu 38 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C ln D Câu 39 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRl + 2πR2 Câu 40 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 25 27 29 23 A B C D 4 4 Câu 41 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 33π 31π B C 6π D A 5 Câu 42 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = ln a C P = + 2(ln a)2 D P = 2loga e Câu 43 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 31π 32π 33π C D A 6π B 5 Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C D −4 Câu 45 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a B C D A 2 Câu 46 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A m < B m > −2 C −4 ≤ m ≤ −1 D −3 ≤ m ≤ Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 48 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRl + 2πR2 B S = πRl + πR2 C S = 2πRl + 2πR2 D S = πRh + πR2 Câu 49 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng B 36080251 đồng C 36080255 đồng D 36080254 đồng Câu 50 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2a+b+c C P = 26abc D P = 2abc - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001