Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt c[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) √ √ bao nhiêu? B R = 21 C R = D R = A R = 29 Câu Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 A B −6 C D Câu Hàm √ số sau√đây đồng biến R? A y = x2 + x + − x2 − x + B y = x2 C y = tan x D y = x4 + 3x2 + Câu Tính I = R1 √3 7x + 1dx 20 45 D I = 28 π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu 6.√ Cho √hai số thực a, bthỏa mãn a > b > Kết luận√nào sau√ sai? √5 √ A a > b B ea > eb C a− < b− D a < b + 2x Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? A < m , B ∀m ∈ R C −4 < m < D m < Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 12 (m) B S = 28 (m) C S = 24 (m) D S = 20 (m) A I = 60 28 B I = 21 Câu Cho a > a , Giá trị alog A B C I = √ a bằng? C D √ √ Câu √ 10 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 450 B 1200 C 600 D 300 R5 dx Câu 11 Biết = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = √ d = 1200 Gọi Câu 12 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh √ CC1 , BB1 Tính khoảng cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A B C a 15 D 3 Câu 13 Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D Trang 1/4 Mã đề 001 Câu 14 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 √ Câu 15 Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang khơng có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang tiệm cận đứng D Khơng có tiệm cận ngang có tiệm cận đứng √ Câu 16 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A (1; +∞) B (0; ) C (0; 1) D ( ; +∞) 4 √ x Câu 17 Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H4) C (H1) D (H2) Câu 18 Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = D m = −15 −u (2; −2; 1), kết luận sau đúng? Câu 19 Trong hệ tọa độ Oxyz cho → √ không gian với→ − −u | = −u | = → − B | u | = C |→ D |→ A | u | = ax + b Câu 20 Cho hàm số y = có đồ thị hình vẽ bên Kết luận sau sai? cx + d A bc > B ac < C ab < D ad > p Câu 21 Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux > thìy < −15 B Nếux = y = −3 C Nếu < x < π y > − 4π D Nếu < x < y < −3 Câu R22 Công thức sai? A R e x = e x + C C a x = a x ln a + C R B R cos x = sin x + C D sin x = − cos x + C Câu 23 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = x3 − 2x2 + 3x + B y = tan x 3x + C y = sin x D y = x−1 Câu 24 Hàm số sau đồng biến R? √ √ A y = tan x B y = x2 + x + − x2 − x + C y = x4 + 3x2 + D y = x2 Câu 25 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2) x + 2x Câu 26 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A 15 B C −2 D 3 x −2x +3x+1 Câu 27 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số đồng biến khoảng (−∞; 1) (3; +∞) D Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) Trang 2/4 Mã đề 001 m Câu 28 Xác định tập tất giá trị tham số m để phương trình 2x + x − 3x − = − 2 có nghiệm phân biệt 19 A S = (−2; − ) ∪ ( ; 7) B S = (−3; −1) ∪ (1; 2) 4 19 19 C S = (−5; − ) ∪ ( ; 6) D S = (−2; − ) ∪ ( ; 6) 4 4 x−3 y−6 z−1 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x y−1 z−1 x = = B = = A −1 −3 y−1 z−1 x−1 y z−1 x = = D = = C −1 −3 −1 −3 Câu 30 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 8,9 D 11 Câu 31 Đồ thị hàm số sau có điểm cực trị: A y = 2x4 + 4x2 + B y = x4 + 2x2 − C y = x4 − 2x2 − D y = −x4 − 2x2 − Câu 32 Người ta cần cắt tơn có hình dạng elíp với độ dài trục lớn 2a, độ dài trục bé 2b (a > b > 0) để tơn có dạng hình chữ nhật nội tiếp elíp Người ta gị tơn hình chữ nhật thu thành hình trụ khơng có đáy hình bên Tính thể tích lớn khối trụ thu 4a2 b 4a2 b 2a2 b 2a2 b A √ B √ C √ D √ 3π 3π 2π 2π Câu 33 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình √ A (x − 1)2 + (y + 1)2 + (z + 2)2 = B (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 34 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + 2n + 2mn + n + A log2 2250 = B log2 2250 = n m 2mn + n + 3mn + n + C log2 2250 = D log2 2250 = n n Câu 35 Cho tứ diện DABC, tam giác ABC vuông B, DA vuông góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 3x Câu 36 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = C m = −2 D Không tồn m → − → − Câu 37 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ → − −v = (1; 14; 15) −u + 3→ −v = (2; 14; 14) A u + 3→ B 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Câu 38 Tính đạo hàm hàm số y = x+cos3x A y′ = x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Trang 3/4 Mã đề 001 Câu 39 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx − |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − x x C y′ = A y′ = B y′ = √ 2(x − 1) ln (x − 1) ln x2 − ln D y′ = (x2 x − 1)log4 e Câu 41 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y − 2)2 + (z − 4)2 = B (x − 1)2 + (y + 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = R ax + b 2x )e + C Khi giá trị a + b là: Câu 42 Biết a, b ∈ Z cho (x + 1)e2x dx = ( A B C D Câu 43 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2abc C P = 2a+2b+3c D P = 2a+b+c Câu 44 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 17 πa 15 πa2 17 A B C D 3x cắt đường thẳng y = x + m Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B m = −2 C m = D Khơng tồn m Câu 46 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ cách hai đường thẳng √ √ a 15 3a 3a 30 3a A B C D 2 10 Câu 47 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B −4 C D Câu 48 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 8π C 6π D 10π Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > m < − C m > D m < −2 Trang 4/4 Mã đề 001