1. Trang chủ
  2. » Tất cả

Đề ôn khảo sát chất lượng thptqg môn toán (650)

4 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 122,85 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho điểm[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = B x = + 2ty = + tz = − 4t C x = + ty = + 2tz = D x = + 2ty = + tz = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ Tính góc hai đường thẳng AC BC ′ A 360 B 600 C 300 D 450 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 1; 0) C (0; 0; 5) D (0; −5; 0) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếux = y = −3 B Nếu < x < y < −3 C Nếux > thìy < −15 D Nếu < x < π y > − 4π2 Câu Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ B m ≥ C m ∈ (0; 2) D m ∈ (−1; 2) A −1 < m < Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu R7 Công thức sai? R A R cos x = sin x + C B R sin x = − cos x + C C e x = e x + C D a x = a x ln a + C Câu 8.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận√nào sau√ sai? √ A a > b B a < b C a− < b− D ea > eb √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang tiệm cận đứng D Có tiệm cận ngang khơng có tiệm cận đứng √ Câu 10 Đạo hàm hàm số y = log 3x − là: 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 11 Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + (ln b)2 B ln( ) = b ln b C ln(ab) = ln a ln b D ln(ab ) = ln a + ln b Câu 12 Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Trang 1/4 Mã đề 001 Câu 13 Cho a > a , Giá trị alog A B √ a bằng? √ C D Câu 14 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x B C D A − 6 3 Câu 15 Tìm giá trị cực đại yCD hàm số y = x − 12x + 20 A yCD = −2 B yCD = C yCD = 52 D yCD = 36 Câu 16 Tìm tất m cho điểm cực tiểu đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục tung 1 A < m < B m < C m < D Không tồn m 3 Câu 17 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; 1; 2) D (−2; −1; 2) Câu 18 Tính tổng tất nghiệm phương trình 6.22x − 13.6 x + 6.32x = 13 C −6 D A B Câu 19 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? A y = sin x B y = tan x 3x + C y = x3 − 2x2 + 3x + D y = x−1 Câu 20 Số nghiệm phương trình x + 5.3 x − = A B C D Câu 21 Hàm số sau khơng có cực trị? A y = cos x C y = x4 + 3x2 + B y = x2 D y = x3 − 6x2 + 12x − đúng? x B Hàm số nghịch biến R D Hàm số đồng biến (−∞; 0) ∪ (0; +∞) Câu 22 Kết luận sau tính đơn điệu hàm số y = A Hàm số nghịch biến (0; +∞) C Hàm số đồng biến R Câu 23 Trong không gian với hệ tọa độ Oxyz cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài A x = + ty = + 2tz = B x = + 2ty = + tz = C x = + 2ty = + tz = D x = + 2ty = + tz = − 4t Câu 24 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 5; 0) B (0; 0; 5) C (0; −5; 0) D (0; 1; 0) Câu 25 Hình nón có bán kính đáy √ R, đường sinh l diện √ tích xung quanh 2 A πRl B 2π l − R C π l2 − R2 D 2πRl Câu 26 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 Câu 27 Cho hình chóp S.ABC có đáy ABC tam giác vuông cân với BA = BC = a, S A = a vng góc với √ mặt phẳng đáy Tính cơsin √ góc hai mặt phẳng √ (SAC) (SBC) bằng? 2 A B C D 2 Trang 2/4 Mã đề 001 Câu 28 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn ngồi 18π (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 54π(dm3 ) B 12π(dm3 ) C 24π(dm3 ) D 6π(dm3 ) √ Câu 29 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ 3 √ a a 2a 3 B a3 D C A Câu 30 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D Câu 31 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 2x x 2x Câu 32 Tính tổng tất nghiệm phương trình 6.2 − 13.6 + 6.3 = 13 A −6 B C D Câu 33 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 75dm2 B 125dm2 C 106, 25dm2 D 50 5dm2 d Câu 34 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ (ABC) √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng B a C 2a D a A a Câu 35 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B −2 C D R ax + b 2x Câu 36 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D x Câu 37 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 128 64 32 cos x π Câu 38 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A ln + B C ln + D ln + 5 5 Câu 39 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ tích khối trụ (T ) lớn √ √ √ 125π 250π 400π 500π A B C D 9 Câu 40 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 29 27 25 A B C D 4 4 Trang 3/4 Mã đề 001 Câu 41 Hàm số hàm số sau đồng biến R 4x + A y = B y = x3 + 3x2 + 6x − x+2 C y = −x3 − x2 − 5x D y = x4 + 3x2 Câu 42 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = x + mx + Câu 43 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A m = B Khơng có m C m = D m = −1 Câu 44 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080251 đồng B 36080253 đồng C 36080255 đồng D 36080254 đồng Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2abc C P = 2a+b+c D P = 26abc R ax + b 2x Câu 46 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D 3x cắt đường thẳng y = x + m Câu 47 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 Câu 48 Hàm số hàm số sau có đồ thị hình vẽ bên A y = x3 − 3x2 B y = −x4 + 2x2 + C y = −x4 + 2x2 √ Câu 49 Tính đạo hàm hàm số y = log4 x2 − x x ′ C y = A y′ = √ B y′ = 2(x2 − 1) ln (x2 − 1)log4 e x2 − ln D y = −2x4 + 4x2 D y′ = x (x2 − 1) ln Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 3mn + n + 2mn + 2n + C log2 2250 = D log2 2250 = n m - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001

Ngày đăng: 01/04/2023, 09:32

w