Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Kết quả nào đúng? A ∫ sin2 x cos x = sin3x 3[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Kết đúng? R sin3 x A sin2 x cos x = + C R C sin2 x cos x = −cos2 x sin x + C sin3 x + C R D sin2 x cos x = cos2 x sin x + C B R sin2 x cos x = − Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 0; 5) C (0; 1; 0) D (0; 5; 0) Câu Cho hình chóp S ABCcó cạnh đáy a cạnh bên tích khối chóp là: q b Thể √ √ a2 b2 − 3a2 3a b B VS ABC = A VS ABC = 12 12 √ √ a2 3b2 − a2 3ab2 C VS ABC = D VS ABC = 12 12 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường trịn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π B 3π C D √ A 3π 3 Câu Tính I = R1 √3 7x + 1dx 45 60 21 20 B I = C I = D I = 28 28 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = x3 − 2x2 + 3x + x−1 C y = tan x D y = sin x −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = √3 −u | = A |→ B |→ C |→ D |→ A I = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m > D m < Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; 1; 2) C I(0; −1; 2) D I(1; 1; 2) Câu 10 Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có√diện tích lớn bằng? √ √ 3 3 2 (m ) B 3(m ) C (m ) D (m ) A Câu 11 Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 Trang 1/4 Mã đề 001 A V1 = V2 B V1 = V2 C V1 = V2 Câu 12 Gọi S (t) diện tích hình phẳng giới hạn đường y = D V1 = V2 ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C − ln − D ln + 2 2 Câu 13 Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ −1 C m ≥ D m > √ d = 1200 Gọi Câu 14 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I lần√lượt trung điểm cạnh CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a a 15 a A B a 15 C D 3 Câu 15 Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu 16 Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 +x2 y = x2 +3x+mcắt nhiều điểm A −2 < m < B < m < C m = D −2 ≤ m ≤ ax + b có đồ thị hình vẽ bên Kết luận sau sai? Câu 17 Cho hàm số y = cx + d A bc > B ad > C ac < D ab < Câu 18 Kết đúng? R A sin2 x cos x = cos2 x sin x + C R sin3 x C sin x cos x = − + C Câu 19 Bất đẳng thức sau đúng? A 3−e > 2−e C 3π < 2π B R sin3 x + C sin x cos x = D R sin2 x cos x = −cos2 x sin x + C √ √ e π B ( √3 − 1) < ( √3 − 1) π e D ( + 1) > ( + 1) Câu 20 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) Câu 21 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = (−∞; 2) C S = [ -ln3; +∞) D S = [ 0; +∞) Câu 22 Một mặt cầu có diện tích 4πR2 thể tích khối cầu C πR3 D 4πR3 A πR3 B πR3 Câu 23 Hàm số sau khơng có cực trị? A y = x3 − 6x2 + 12x − B y = cos x C y = x2 D y = x4 + 3x2 + Câu 24 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 25 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x + 2mx − − 2m đoạn [−1; 2] nhỏ A m ∈ (−1; 2) B −1 < m < C m ≥ D m ∈ (0; 2) Trang 2/4 Mã đề 001 Câu 26 Tìm tất giá trị tham số m để đồ thị hàm số y = hai điểm cực trị nằm phía bên phải trục tung? A m > m < B m > C m > 3 x − (m − 2)x2 + (m − 2)x + m2 có 3 D m < Câu 27 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD hình bình hành A (1; −1; 1) B (1; 1; 3) C (1; −2; −3) D (−1; 1; 1) Câu 28 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x − 1)2 + (y + 1)2 + (z + 2)2 = √ D (x + 1)2 + (y − 1)2 + (z − 2)2 = C (x + 1)2 + (y − 1)2 + (z − 2)2 = 2x − Câu 29 Với giá trị tham số m hàm số y = đạt giá trị lớn đoạn [1; 3] x + m2 : √ A m = ±3 B m = ±1 C m = ±2 D m = ± Câu 30 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 24 12 Câu 31 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ√(T ) Tính cạnh hình vuông √ 3a 10 B 3a C 3a D 6a A Câu 32 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D x2 + 2x Câu 33 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B −2 C D 15 Câu 34 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 35 Chọn mệnh đề mệnh đề sau: R R e2x A sin xdx = cos x + C B e2x dx = + C R R (2x + 1)3 +C C x dx =5 x + C D (2x + 1)2 dx = Câu 36 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai MN S C √ cách hai đường thẳng √ √ cạnh AB, AD Tính khoảng √ a 15 3a 3a 30 3a B C D A 2 10 x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = Câu 37 Tìm tất giá trị tham số m để hàm số y = A Khơng có m B m = −1 Câu 38 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B −4 ≤ m ≤ −1 C m < D m > −2 Trang 3/4 Mã đề 001 Câu 39 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 8π B 12π C 10π D 6π √ Câu 40 Tính đạo hàm hàm số y = log4 x2 − 1 x x x ′ A y′ = √ B y′ = C y′ = D y = (x − 1) ln 2(x2 − 1) ln (x2 − 1)log4 e x2 − ln Câu 41 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo √ góc đường thẳng S√B mp(S AC) Tính giá√trị sin α 15 15 B C D A 10 Câu 42 Hàm số hàm số sau đồng biến R 4x + A y = −x3 − x2 − 5x B y = x+2 C y = x3 + 3x2 + 6x − D y = x4 + 3x2 d Câu 43 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm √ cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng √ (ABC) A a B a C 2a D a Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a < a x > ay ⇔ x < y B Nếu a > a x = ay ⇔ x = y C Nếu a > a x > ay ⇔ x < y D Nếu a > a x > ay ⇔ x > y Câu 45 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox D m < −2 A m > m < − B m > m < −1 C m > Câu 46 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 C R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = − D R3 |x2 − 2x|dx R2 (x2 − 2x)dx + R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx Câu 47 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể √ √ √ √ tích khối trụ (T ) lớn 125π 400π 250π 500π B C D A 9 Câu 48 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 9a C 3a D 6a3 A 4a Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D x + mx + Câu 50 Tìm tất giá trị tham số m để hàm số y = đạt cực tiểu điểm x = x+1 A Khơng có m B m = C m = D m = −1 - - - - - - - - - - HẾT- - - - - - - - - Trang 4/4 Mã đề 001