1. Trang chủ
  2. » Tất cả

Mass Spectrometry for Lipidomics 2023

718 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 718
Dung lượng 21,6 MB

Nội dung

The field of lipidomics has undergone an enormous growth in recent years, which can be illustrated by the number of published articles and other bibliometric parameters. This highlights the renewed interest in lipids, now driven by the enthusiasm to explore the world of lipidomes and how these, among others, impact health and disease. The excitement is enormous, prompting many newcomers to enter the field. However, training and education in lipidomics are still scarce or even lacking. A successful lipidomics study requires appropriate expertise in all aspects of the lipidomic workflow, covering experimental design, sample preparation, analytical measurement using mass spectrometry techniques, data processing, and finally correct reporting of lipidomic results. The large discrepancy in know‐how and lipidomics assessments causes confusion in the field that is also mirrored in the literature. Recently, the International Lipidomics Society was established to fill this gap and to unite researchers around the world interested in all aspects of lipidomics research and collectively start creating urgently needed textbook chapters in lipidomics. This situation prompted us to start working on this book project, where we have assembled the content covering three sections: analytical methodologies in lipidomics, lipidomic analysis according to lipid categories and classes, and finally lipidomic applications. We invited leading experts for particular topics, and, after more than a year of tedious work, we are proud to present the resul

Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Mass Spectrometry for Lipidomics Methods and Applications Edited by Michal Holčapek and Kim Ekroos Volume Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Mass Spectrometry for Lipidomics Methods and Applications Edited by Michal Holčapek and Kim Ekroos Volume Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Mass Spectrometry for Lipidomics Dr Kim Ekroos Library of Congress Card No.: applied for Dr Michal Holčapek Lipidomics Consulting Ltd Irisviksvägen 31D 02230 Espoo Finland Cover Design: Wiley Cover Images: © Kateryna Kon/Shutterstock; Courtesy of Michaela Chocholoušková British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at â 2023WileyVCH GmbH, Boschstraòe 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not to be considered unprotected by law Print ISBN:  978-3-527-35222-7 ePDF ISBN:  978‐3‐527‐83649‐9 ePub ISBN:  978‐3‐527‐83650‐5 oBook ISBN:  978‐3‐527‐83651‐2 Typesetting  Straive, Chennai, India Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License University of Pardubice Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic All books published by WILEY-VCH are carefully produced Nevertheless, authors, editors, and publisher not warrant the information contained in these books, including this book, to be free of errors Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate Editors Contents Preface  xiii 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Introduction to Lipidomics  Harald C Köfeler, Kim Ekroos, and Michal Holčapek ­Preface  ­Historical Perspective  ­Sampling and Preanalytics  ­Reference Materials and Biological Reference Ranges  ­Clinical Lipidomics  ­Identification and Annotation  ­Quantitation  ­Lipid Ontology  10 ­References  11 Part I  Analytical Methodologies in Lipidomics  13 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.6 2.6.1 2.6.2 2.6.3 Preanalytics forLipidomics Analysis 15 Gonỗalo Vale and Jeffrey G McDonald ­Safety  15 ­Introduction  15 ­Sample Origin  16 ­Sample Collection  17 ­Tissue Homogenization  19 Mortar and Pestle  20 Rotor–Stator  21 Blender  21 Potter-­Elvehjem  22 Bead Mill  22 ­Liquid–Liquid Extraction (LLE)  22 Folch Method  24 Bligh and Dyer (BD) Method  27 Modified Folch and Bligh/Dyer (BD) Methods  27 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License v Contents 2.6.4 2.6.5 2.6.6 2.6.7 2.6.8 2.7 2.8 2.9 Rose and Oaklander (RO) Method  28 Matyash or Methyl-­tert-­Butyl Ether (mTBE) Method  28 BUME Method  28 Alshehry Method  29 Three-­Phase Lipid Extraction (3PLE)  29 ­Resuspension and Solubilization  30 ­Automation  31 ­Tips and Tricks  34 ­References  38 Direct Infusion (Shotgun) Electrospray Mass Spectrometry  41 Marcus Höring and Gerhard Liebisch ­Introduction  41 ­Complexity of Crude Lipid Extracts  42 Main Lipid Classes in Mammalian Samples  42 Bond Types as Structural Features  43 Fatty Acids as the Major Building Blocks  44 Lipid Species and Double-Bond Series  45 ­Introduction to Mass Spectrometry of Lipids  46 Annotation of Lipid Structures Analyzed by MS  46 Isomers  48 Isobars and the Type-II Isotopic Overlap  49 ­Overview of Direct Infusion MS Workflows  50 ­Sample Preparation  50 Preanalytics – Sample Stability  50 Lipid Extraction  54 Solvents, Additives, and Lipid Concentration  54 Sample Derivatization  55 ­Direct Infusion  55 ­Mass Spectrometry Analysis  56 Electrospray Ionization of Lipids  56 Tandem Mass Spectrometry  57 Multidimensional MS Shotgun Lipidomics  61 High-Resolution Mass Spectrometry  61 ­Lipid Identification  65 Identification by MS/MS  65 Identification by HRMS  65 Consideration of Type-II Overlap  67 Identification Hierarchy  67 Caveats/Pitfalls  69 ­Lipid Quantification  70 Internal Standards  70 Type-I Isotopic Effect  71 Evaluation and Correction of Isotopic Overlap  71 Species Response  73 3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 3.3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.6 3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.8 3.8.1 3.8.2 3.8.3 3.8.4 3.8.5 3.9 3.9.1 3.9.2 3.9.3 3.9.4 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License vi 3.9.5 3.10 3.11 3.12 3.12.1 3.12.2 3.12.3 3.13 Calculation of Concentration  76 ­Data Analysis/Software  78 ­Limitations  79 ­Selected Applications  79 Analysis of Plasma  79 Analysis of Tissues and Cells  80 Analysis of Lipid Metabolism  80 ­Outlook  81 ­References  82 Liquid Chromatography – and Supercritical Fluid Chromatography – Mass Spectrometry  91 Michal Holčapek, Ondřej Peterka, Michaela Chocholoušková, and Denise Wolrab ­Introduction  91 ­Lipid Class Separation  93 Normal-Phase Liquid Chromatography  94 Hydrophilic Interaction Liquid Chromatography  95 Supercritical Fluid Chromatography  97 ­Lipid Species Separation  99 Reversed-Phase Liquid Chromatography  99 Nonaqueous Reversed-Phase Liquid Chromatography  102 ­Other Separation Approaches  103 Silver Ion Chromatography  103 Chiral Chromatography  105 Multidimensional Approaches  106 ­References  108 4.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 Mass Spectrometry Imaging of Lipids  117 Shane R Ellis and Jens Soltwisch 5.1 ­Introduction  117 5.2 ­Sample Preparation for Mass Spectrometry Imaging of Lipids  118 5.2.1 Tissue Samples  118 5.2.2 Sectioning and Mounting  119 5.2.3 Cell Culture  119 5.2.4 Pre-processing  119 5.2.5 Handling and Storage  120 5.2.6 Formalin-Fixed Paraffin-Embedded Tissue  120 5.3 ­Desorption/Ionization Techniques used for MSI of Lipids  120 5.3.1 Matrix-Assisted Laser Desorption/Ionization (MALDI)  120 5.3.2 Secondary Ion Mass Spectrometry SIMS  124 5.3.3 MSI Methods Using Electrospray Ionization  125 5.3.3.1 Desorption Electrospray Ionization  125 5.3.3.2 Laser Ablation Electrospray Ionization and IR-Matrix-Assisted Laser Desorption-Electrospray Ionization  127 vii Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Contents Contents 5.3.3.3 5.4 5.5 5.6 5.7 5.7.1 5.7.2 5.7.3 5.7.4 5.7.5 5.8 Nanospray Desorption Electrospray Ionization  128 ­Combining Ion Mobility of Lipids with MSI  128 ­On Tissue Chemical Derivatization for MSI  129 ­Quantification in MSI  130 ­Lipid Identification for MSI  132 Types of Ions Generated by MSI  132 In-source Fragmentation Considerations  133 MSI Lipid Identification Using Accurate Mass  133 Deploying MS/MS for Lipid Identification in MSI  135 Isomer-Resolved MSI  135 ­Conclusions  137 ­References  137 Ion Mobility Spectrometry  151 Kaylie I Kirkwood, Melanie T Odenkirk, and Erin S Baker ­Ion Mobility Spectrometry  151 Introduction  151 Ion Mobility Spectrometry Techniques and Platforms  154 Drift Tube Ion Mobility Spectrometry (DTIMS)  154 Traveling-­Wave Ion Mobility Spectrometry (TWIMS)  156 Trapped Ion Mobility Spectrometry (TIMS)  157 Field Asymmetric Ion Mobility Spectrometry (FAIMS)  158 Ion Mobility Resolving Power (Rp) Advancements  159 Cyclic IMS (cIM)  159 Standard Lossless Ion Manipulation (SLIM)  160 Tandem IMS  161 IMS Data Deconvolution Software Strategies  161 Drift Gas Dopants and Modifiers  163 Benefits of IMS for Lipidomics  164 Chemical Space Separation with IMS  165 Lipid Identification and Characterization with CCS  166 CCS for Lipid Structural Analysis  168 Lipidomic Applications with IMS  168 IMS in Imaging and Shotgun Lipidomics  168 IMS-­MS/MS and Novel Speciation Approaches  169 Conclusions and Outlook of IMS for Lipidomics  172 ­References  173 6.1 6.1.1 6.1.2 6.1.2.1 6.1.2.2 6.1.2.3 6.1.2.4 6.1.3 6.1.3.1 6.1.3.2 6.1.3.3 6.1.3.4 6.1.3.5 6.1.4 6.1.4.1 6.1.4.2 6.1.4.3 6.1.5 6.1.5.1 6.1.5.2 6.1.6 Structural Characterization of Lipids Using Advanced Mass Spectrometry Approaches  183 Josef Cvačka, Vladimír Vrkoslav, and Štěpán Strnad  183 7.1 ­Introduction  183 7.2 ­Structure and Position of Aliphatic Chains in Lipids  185 7.2.1 Double and Triple Bonds  185 7.2.1.1 Charge-Switch Derivatization of Fatty Acids  186 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License viii 7.2.1.2 7.2.1.3 7.2.1.4 7.2.1.5 7.2.1.6 7.2.1.7 7.2.2 7.2.3 7.2.4 7.3 Ozone-Induced Dissociation  187 Paternò–Büchi Reaction  192 Epoxidation of Double Bonds  194 Acetonitrile-Related Adducts in APCI  195 Photodissociation of Unsaturated Lipids  199 Electron-Induced Dissociation of Unsaturated Lipids  202 Methyl Branching of Aliphatic Chains  204 Oxygen-Containing Functional Groups and Carbocyclic Structures  205 Stereospecific Position of Acyl Chain on Glycerol  207 ­Conclusions and Outlook  210 ­References  211 Lipidomic Identification  227 Harald Köfeler ­Overview  227 ­Chromatography  228 ­Mass Spectrometry  230 Exact Mass  230 Fragment Spectra  232 General Considerations  232 Fatty Acids  233 Oxylipins  233 Phospholipids  234 Sphingolipids  237 Glycerolipids  242 Sterols  242 Deep Structure Determination  242 ­Ion Mobility Spectrometry  243 ­Identification Workflows  244 ­References  249 8.1 8.2 8.3 8.3.1 8.3.2 8.3.2.1 8.3.2.2 8.3.2.3 8.3.2.4 8.3.2.5 8.3.2.6 8.3.2.7 8.3.3 8.4 8.5 9.1 9.2 9.3 9.4 9.4.1 9.4.2 9.5 9.5.1 9.5.2 9.6 9.7 Lipidomics Quantitation  255 Michaela Chocholoušková, Denise Wolrab, Ondřej Peterka, Robert Jirásko, and Michal Holčapek ­Introduction to Lipidomics Quantitation  255 ­Principle of Quantitation  256 ­Internal Standards  257 ­Isotopic Correction  261 Isotopic Correction Type I  261 Isotopic Correction Type II  262 ­Common Approaches for Lipidomics Quantitation  263 Shotgun MS  263 Chromatography – MS  264 ­Validation  265 ­Quality Control (QC)  268 ­References  268 ix Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Contents 75 Danne-Rasche, N., Rubenzucker, S., and Ahrends, R (2020) Uncovering the complexity of the yeast lipidome by means of nLC/NSI-MS/MS Anal Chim Acta 1140: 199–209 76 Zhang, W., Zhang, D., Chen, Q et al (2019) Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers Nat Commun 10 (1): 1–9 77 Kuo, T.-H., Chung, H.-H., Chang, H.-Y et al (2019) Deep lipidomics and molecular imaging of unsaturated lipid isomers: a universal strategy initiated by mCPBA epoxidation Anal Chem 91 (18): 11905–11915 78 Thomas, M.C., Mitchell, T.W., Harman, D.G et al (2008) Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions Anal Chem 80 (1): 303–311 79 Takahashi, H., Shimabukuro, Y., Asakawa, D et al (2018) Structural analysis of phospholipid using hydrogen abstraction dissociation and oxygen attachment dissociation in tandem mass spectrometry Anal Chem 90 (12): 7230–7238 80 Uchino, H., Tsugawa, H., Takahashi, H., and Arita, M (2021) Computational Mass Spectrometry Accelerates C=C Position-Resolved Untargeted Lipidomics Using Oxygen Attachment Dissociation Research Square https://doi.org/10.21203/ rs.3.rs-­727852/v1 81 Baba, T., Campbell, J.L., Le Blanc, J.C.Y., and Baker, P.R.S (2017) Distinguishing cis and trans isomers in intact complex lipids using electron impact excitation of ions from organics mass spectrometry Anal Chem 89 (14): 7307–7315 82 Williams, P.E., Klein, D.R., Greer, S.M., and Brodbelt, J.S (2017) Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry J Am Chem Soc 139 (44): 15681–15690 83 Klein, D.R., Blevins, M.S., Macias, L.A et al (2020) Localization of double bonds in bacterial glycerophospholipids using 193 nm ultraviolet photodissociation in the negative mode Anal Chem 92 (8): 5986–5993 84 Blevins, M.S., James, V.K., Herrera, C.M et al (2020) Unsaturation elements and other modifications of phospholipids in bacteria: new insight from ultraviolet photodissociation mass spectrometry Anal Chem 92 (13): 9146–9155 85 Brodbelt, J.S., Morrison, L.J., and Santos, I (2020) Ultraviolet photodissociation mass spectrometry for analysis of biological molecules Chem Rev 120 (7): 3328–3380 86 Watrous, J., Roach, P., Alexandrov, T et al (2012) Mass spectral molecular networking of living microbial colonies Proc Natl Acad Sci U.S.A 109 (26): E1743–E1752 87 Fox Ramos, A.E., Evanno, L., Poupon, E et al (2019) Natural products targeting strategies involving molecular networking: different manners, one goal Nat Prod Rep 36 (7): 960–980 88 Quinn, R.A., Melnik, A.V., Vrbanac, A et al (2020) Global chemical effects of the microbiome include new bile-acid conjugations Nature 579 (7797): 123–129 703 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License  ­Reference 27  Microbial Lipidomics 89 Cajka, T and Fiehn, O (2016) Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics Anal Chem 88 (1): 524–545 90 Sarafian, M.H., Gaudin, M., Lewis, M.R et al (2014) Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry Anal Chem 86 (12): 5766–5774 91 Wong, M.W.K., Braidy, N., Pickford, R et al (2019) Comparison of single phase and biphasic extraction protocols for lipidomic studies using human plasma Front Neurol 10: 879 92 Lipidomics Standards Initiative Consortium (2019) Lipidomics needs more standardization Nat Metab (8): 745–747 93 O’Donnell, V.B., Ekroos, K., Liebisch, G., and Wakelam, M (2020) Lipidomics: current state of the art in a fast moving field Wiley Interdiscip Rev Syst Biol Med 12 (1): e1466 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 704 Index a acetonitrile  29, 94, 95, 99, 101, 102, 106, 185, 195, 196, 296, 329, 490, 493, 497, 500, 535, 591 acyl alpha‐hydroxy fatty acid (AAHFA)  697 acyl phosphatidylglycerol  416–417 adipocytes  42, 46, 641 advanced mass spectrometry  183–211 aging/ageing process  657–658 Alzheimer’s disease  660–661 chronological and metabolic  662–663 development and application of  663–664 plasma lipidome  659 using lipidomics  658–659 Alshehry method  29 Alzheimer’s disease  660–661 vs lipids  661–662 anionic lysoglycerophospholipids  416 anticoagulants  18, 322, 562 antioxidants  18, 321, 548, 562, 571, 591 apolipoprotein E gene (APOE)  661 Arabidopsis thaliana  601, 608, 610 argentation chromatography  103 arylsulfatase A (ARSA)  427, 455 assay design and raw data analysis with LipidCreator and Skyline  276–278 with LipidXplorer  279–280 atmospheric pressure ionization (API) techniques  186, 354, 356, 362, 364 atmospheric pressure photoionization (APPI)  102 b bead mill  22 benzophenone  137, 193, 194 bile acids (BAs)  509, 693–694 amphiphilic nature  510 analytical methods  512–517 applications  516 disadvantage  516 GC‐MS  517–518 human hepatocytes  509 LC‐MS early technologies and ESI‐ Quadrupole MS  518–519 HR‐MS  519 SFC  519–520 microbiome research  512 synthesis  511 bis(monoacylglycero)phosphate (BMP)  55, 395, 413–414 blender homogenizer  21 Bligh and Dyer (BD) method  23, 27–28 branched‐chain fatty acids (BCFA)  204, 296, 305, 307 butanol–methanol (BUME) method  24, 28–29 butylhydroxytoluene (BHT)  18 Mass Spectrometry for Lipidomics: Methods and Applications, First Edition Edited by Michal Holčapek and Kim Ekroos © 2023 WILEY-VCH GmbH Published 2023 by WILEY-VCH GmbH Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 705 Index c cancer biomarkers  546 cancer lipidomics in biological samples  546–547 data processing  551–552 and data reporting  551–552 method requirements  549–550 preanalytical considerations  547–548 in research  552–554 sample preparation  549 statistical analysis  551–552 validation and quality control  550–551 carboxymethylcellulose (CMC)  118 cardiolipin (CL)  56, 134, 169, 170, 395, 415–416, 676, 691 cells analysis  80 ceramides with long and very long acyl chains  435–440 1‐phosphates  443–444 skin omega‐hydroxy  440–441 ceramide synthases  427, 429, 436, 440, 457, 461, 672, 674 charge‐inversion approach  137 charge transfer dissociation (CTD)  204 chemical ionization  185, 305, 444, 516, 517, 647 chiral chromatography  9, 105–106, 227, 329–331, 353, 364, 369 cholesterol esters  94, 229, 500, 501, 510 cholesterol precursors  485 cholesteryl ester (CEs)  23, 42, 77, 256, 535, 536, 540, 628, 650 choline glycerophospholipid alkaline adducts  401–402 protonated species  400–401 choline lysoglycerophospholipids (lysoPC)  403–405 chromatographic separation  48, 50, 67, 71, 107, 227–230, 232, 242, 263, 274, 318, 325, 490, 519, 591, 694 chromatography coupling  256 chromatography MS  264–265 chromatography technology  696 chronological age  659, 662–663 CID spectrum  234 circular economy model  593, 595 citrate  18, 120, 646 clinical diagnostics  557 congenital adrenal hyperplasia (CAH)  569–570 Fabry disease  567 F2‐Isoprostanes  571 Gaucher disease  568 intrahepatic cholestasis of pregnancy (ICP)  569 lipidomics in patient care  561–563 mitochondrial fatty acid β‐oxidation and organic acid metabolism  566–567 NAFLD/NASH  568–569 reference intervals and true values  564–565 reproducibility issue  563–564 trailblazing ceramides  559–561 vitamin D and its metabolites  558–559 vitamin D deficiency  570–571 coefficient of variation (CV)  266 collisionally activated dissociation (CAD)  183, 372 collision‐cross section (CCS) lipid identification and characterization with  166–168 for lipid structural analysis  168 measurements  129 collision‐induced dissociation (CID)  57, 136, 137, 171, 183–186, 190, 192–196, 200, 204–209, 232, 233, 235, 237, 242, 243, 249, 280, 297, 305, 307, 308, 310, 311, 340, 372, 399, 404, 407, 416, 429, 434, 437, 442–452, 455, 456, 518, 648, 690, 694, 696 compensation voltage (CV)  158, 165, 243 congenital adrenal hyperplasia (CAH)  567, 569–571 Coronavirus disease 2019 (COVID‐19)  627 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 706 covalent adduct chemical ionization (CACI)  369 crude lipid extracts bond types  43–44 fatty acids  44–45 lipid species and double bond series  45–46 in mammalian samples  42–43 C18‐sphingosine (C18‐So)  425, 437, 439, 441, 456 cyclic IMS (cIM)  157, 159–161 cyclic phosphatidic acid  417 cyclopropane fatty acids (CFAs)  207, 614 cytochrome P450 (CYP)  336–337, 440 d damage‐associated molecular patterns (DAMPs)  318 data analysis  3, 7, 10, 36, 78–79, 151, 172, 271, 276, 279, 280, 282, 535, 539, 541, 628, 634 data‐dependent acquisition (DDA)  135, 170–172, 228, 280, 696 deep structure determination  242–243 deisotoping procedure  92 dentate gyrus (DG)  459 deoxycholic acid (DCA)  510, 511, 569, 694 deoxydihydroceramides  436 deprotenization method  535 desorption electrospray ionisation (DESI)  126–127, 129, 132, 135, 137, 169 diacylglycerols (DGs)  363–364 electrospray ionization  365 dichloromethane (DCM)  20, 23, 27, 105, 488, 549 dicloromethane:methanol solvent  20 dietary lipids  571, 585, 596 differential ion mobility spectrometry (DIMS)  158, 243, 329, 330 differential mobility spectrometry (DMS) 158, 164, 169, 172, 203, 329, 374 diacylglycerol (DGs)  351, 357 dihydroceramides (DHCer)  427, 429, 435, 437, 439, 443, 536 dilution integrity  266, 268 dilution QC (dQC)  537 dimethylglycyl esters  492–493 4,4‐dimethyloxazoline (DMOX)  185, 295–296, 309, 354 direct infusion  27, 29, 41–82, 91, 186, 192, 201, 228, 518, 601–603, 648, 651 direct infusion MS workflows  50 DNA methylation  662–663 docosahexanoic acid (DHA)  45, 46, 330, 337, 339, 369, 588, 589, 591–594 double bond equivalents (DBEs)  47, 48 15dPGJ2  334 drift gas dopants and modifiers  163–164, 172 drift tube IMS (DTIMS)  151, 154–162, 164, 167, 169, 243 e eicosapentaenoic acid (EPA)  330, 337, 339, 369, 588, 589, 591–594 electron capture dissociation (ECD)  184 electron detachment dissociation (EDD)  184 electron impact excitation of ions from organics (EIEIO)  172, 202, 243, 374, 696 electron ionization  183, 230, 295, 646 electrospray ionization (ESI)  124, 195, 232, 365, 428 conventional  307 desorption  126–127 epoxidation  310 ion–ion chemistry  309–310 IR‐MALDESI  127 laser ablation  127 nanospray desorption  128 ozone‐induced dissociation  307–308 Paternò–Büchi reaction  308–309 silver ion liquid chromatography‐ESI  310 electrospray ionization (ESI‐MS) of lipid structure  41 707 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index Index electrospray ionization tandem mass spectrometry  41, 57, 188, 328 epoxidation  194–195, 310, 696 equivalent carbon number (ECN) model  229, 246 essential fatty acids (EFAs)  588, 651 ethanolamine glycerophospholipid  405–417 ethanolamine lysoglycerophospholipids 408–409 external quality assurance (EQA) programs  565 f Fabry disease  450, 557, 567, 568 false discovery rates (FDR)  287 fatty acid methyl esters (FAME)  44, 91, 190, 192, 196, 354, 356, 357, 371, 589–591, 646 fatty acids (FA)  45, 233, 293, 646, 690–691 analysis  354–355 characterization  311 charge‐switch derivatization  186–187 classification  294–295 deuteration characterization  310–311 4,4‐dimethyloxazoline derivatization  295–296 electrospray ionization conventional  307 epoxidation  310 ion‐ion chemistry  309–310 ozone‐induced dissociation  307–308 Paternò–Büchi reaction  308–309 silver ion liquid chromatography‐ESI  310 gas chromatography  295–296 GC‐solvent mediated covalent adduct chemical ionization  296 branched chain FA  305 conjugated linoleic acids  304 double bond position assignment  296–304 quantitative analysis  305–307 liquid chromatography  295 picolinyl ester  296 structure  294 Fenton‐type chemistry  321 field asymmetric waveform ion mobility spectrometry (FAIMS)  129, 151, 158, 159, 161, 164, 165, 167, 169, 192, 243, 374 fish products  591, 592 F2‐isoprostane (F2‐IsoPs)  323, 337, 571 flame ionization detection (FID)  44, 354 flow injection analysis (FIA)  41, 53, 55, 91 flow injection analysis (FIA)‐MS/MS mode  536 Folch LLE method  24, 27 foodomics  377, 585, 586, 596 formalin fixation paraffin embedding (FFPE)  120 Fourier transform‐ion cyclotron resonance‐mass spectrometry (FT‐ICR‐MS)  122, 231 Fourier transform‐mass spectrometry (FT‐MS)  72, 75, 78, 82, 231, 244 fragmentation  4, 69, 73, 74, 78, 121, 124, 125, 151, 152, 161, 170–172, 183–185, 193, 194, 196, 197, 199–203, 207–209, 232–237, 240–243, 249, 257, 276–278, 293, 296, 298, 303, 304, 306, 309, 369, 372, 374, 397–417, 428, 437, 439, 441, 443, 445–447, 452, 456, 497, 516, 518, 519, 591, 608, 647, 693, 696 free fatty acids (FFA)  5, 18, 79, 124, 127, 130, 132, 133, 137, 195, 293, 362, 365, 371, 457, 458, 595, 609 functional foods  591, 596 g β‐galactosylceramide (GalCer)  446–449, 455 gangliosides  56, 125, 237, 240, 260, 425, 426, 450–456, 459, 661 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 708 gas chromatography (GC)  44, 230, 295 with flame ionization detection  354–355 gas chromatography mass spectrometry (GC‐MS)  228, 275, 295–296, 332, 334, 335, 337, 354, 356, 357, 362, 364, 487–488, 512, 516–518, 522, 589, 593, 601, 609, 646, 649 gas cluster ion beams (GCIBs)  125 Gaucher disease  446, 567, 568 genome‐wide association studies (GWASs)  540–541, 615 Girard reagents  493–496 Girard T reagent  129 glass homogenizer  21, 22 global quality control (gQC) sample  536, 538 β‐glucosylceramide (GlcCer)  446, 447, 457 acylglycerols  339, 340, 351, 596 glycerol  30, 47, 69, 136, 189, 207–210, 235–238, 351–353, 356, 366, 372, 374, 395–399, 401, 404, 406, 413, 610, 612, 644, 645, 691, 692 glycerolipids  5, 24, 29, 42, 47, 170, 172, 193, 207, 210, 242, 243, 260, 277, 278, 293, 294, 308, 351–380, 548 nomenclature  351 glycerophospholipid (GPL)  29, 659, 691–692 acyl phosphatidylglycerol  416–417 anionic lysoglycerophospholipids  416 bis(monoacylglycero) phosphate  413–414 building block pattern  397 cardiolipin  415–416 choline glycerophospholipid alkaline adducts  401, 404 protonated species  400–401 cyclic phosphatidic acid  417 diverse functions and structures of  395–397 ethanolamine glycerophospholipid  405–417 ethanolamine lysoglycerophospholipids  408–409 fragmentation patterns  400–417 molecular mechanisms  398–399 practical usage  399–400 recognition  397–398 N‐acyl phosphatidylethanolamine  416 N‐acyl phosphatidylserine  416 pattern recognition, building block pattern  397 phosphatidic acid  411 phosphatidylglycerol  412–413 phosphatidylinositol and polyphosphoinositides  409–411 phosphatidylserine  411–412 structures  44 glycosylinositol phosphorylceramides (GIPCs)  461, 607 Goslin  273, 280–282, 286 G protein‐coupled receptor (GPCR)  485, 690 h head group‐acylated lipids  611 Hedgehog (Hh) signaling pathway  485 hexosylceramides  137, 446–447 high‐performance liquid chromatography (HPLC)  91, 93, 98, 102, 227, 364, 433, 518, 519, 586, 593, 609, 642, 649 high resolution/accurate mass (HRAM)  41, 56, 61 high resolution demultiplexing (HRdm)  162, 163 high‐resolution mass spectrometers (HRMSs)  61, 63, 228 high resolution mass spectrometry (HRMS)  69, 81, 519, 538 lipid identification by  65–67 homogenization techniques bead mill  22 blender homogenizer  21 mortar and pestle  20–21 Potter‐Elvehjem apparatus  22 rotor–stator  21 709 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index Index HUPO–PSI  274 hydrophilic interaction liquid chromatography (HILIC)  79, 92, 94–97, 99, 106, 107, 227, 229, 230, 365, 608, 651 i imaging mass spectrometry (IMS) of sphingolipids  458–459 infrared‐matrix‐assisted laser desorption‐ electrospray ionization (IR‐ MALDESI)  127, 129, 132, 137 infrared multiple photon dissociation (IRMPD)  184 inter/intrabatch effect  537 intrahepatic cholestasis of pregnancy (ICP)  569 ion–ion chemistry  309–310 ion mobility, of lipids  128–129 ion mobility spectrometry (IMS)  374 benefits for lipidomics  164–165 chemical space separation with  165–166 cyclic IMS (cIM)  159–160 data deconvolution software strategies  161–163 drift gas dopants and modifiers  163–164 drift tube IMS (DTIMS)  154–156 field asymmetric IMS (FAIMS)  158 in imaging and shotgun lipidomics  168–169 IMS‐MS/MS  169–172 lipid identification and characterization with  166–168 lipidomic identification  243 structure lossless ion manipulation (SLIM)  160–161 tandem IMS  161 techniques and platforms  154–158 trapped IMS (TIMS)  157–158 traveling wave ion mobility spectrometry (TWIMS)  156–157 iPF2α‐III  337 IsoalloLCA  694 isobaric lipid molecules  50, 81 isobaric mass  231 isomeric mass  231 isomers biological considerations of  329–331 challenges of  327–329 8‐iso‐PGF2α  337 isotope dilution analysis  327 isotopic correction type I  261–262 type II  262–263 k 3‐ketodihydrosphingosine reductase (KDSR)  429, 430, 436, 437, 461 3‐ketodihydrosphingosines (KDS)  427, 429 kit‐based metabolomics (Kit‐Met)  535, 536, 539, 540 l lactosylceramide (LacCer)  447, 449, 450, 455–457 laser ablation electrospray ionization (LAESI)  127, 135, 170 laser wavelength  121, 184 LC‐MS/MS analytical method  324–327 leukotrienes (LTs)  336, 588 limit of detection (LOD)  79, 161, 318, 326, 435, 489, 491, 538 limit of quantification (LOQ)  318, 326, 435, 492 limit of quantitation (LOQ)  266, 318 linear ion trap (LTQ)  244, 374 lipid class separation  7, 91–99, 106, 260, 262, 264, 550 lipid class specific fragments (LCF)  58 LipidCreator  273, 276–278, 286 lipid databases  285–286, 397, 635 lipid identification caveats/pitfalls  69–70 hierarchy  67, 69 by HRMS  65–67 for MSI in‐source fragmentation  133 ions generated by  132 isomer‐resolved  136–137 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 710 MS/MS development in  135 using accurate mass  133–135 by MS/MS  65 type‐II overlap  67–68 lipid ions  69, 183, 184, 189, 199, 210 LIPID MAPS nomenclature system  481 LIPID MAPS Structure Database (LMSD)  2, 9, 244, 449 lipid metabolism analysis  80–81 lipidomic analysis automation  31–34 clinical lipidomics  identification and annotation  8–9 lipid ontology  10–11 liquid‐liquid extraction (LLE)  22–30 quantitation  9–10 reference materials and biological reference ranges  4–7 resuspension and solubilization  30–31 sample collection  17–19 sample origin  16–17 sampling and preanalytics  tissue homogenization  19–22 lipidomic identification  227–228 chromatography  228–230 identification workflows  244, 249 ion mobility spectrometry  243–244 mass spectrometry  230–243 lipidomic profiling  533–534, 553 analytical platform  536 data acquisition  536–537 database creation  539–540 data processing  537–538 genome‐wide association studies (GWASs)  540–541 sample collection  534–535 sample preparation  535–541 lipidomic quantitation  255–256 chromatography MS  264–265 internal standards  257–261 isotopic correction  261–263 principle of  256–257 quality control (QC)  268 shotgun MS  263–264 validation  265–268 lipidomics  585 analysis  602 application  609 edible plants and vegetable oils  594–596 fish, shellfish and algae  591–594 in multi‐omics studies  627–630 classification  633 computational analysis methods  632 current challenges  635 data integration  632 planning and conducting  630–632 statistical integration  632 nutrition and human health  586–591 phosphatidic acids  601–604 phospholipase Ds  602 in plant science  615 profiling  545 workflow  228, 274–276 Lipidomics Informatics for Life‐Science (LIFS)  271, 272, 278 Lipidomics Standard Initiative (LSI)  3, 4, 9, 10, 42, 81, 272, 275, 278, 550, 552, 564, 630 lipid ontology  3, 10–11 lipid quantification calculation of concentration  76 internal standards  70–72 isotopic overlap  71–73, 76 species response  73–74, 77, 78 type‐I isotopic effect  71, 73 lipids cell biology  678–680 double and triple bonds  185–204 intracellular trafficking  674 early secretory pathway  676–678 endocytic pathway  674, 676 membrane biophysical properties  672–674 of organelles  669–674 ozone‐induced dissociation  187–192 structural analysis  168 of subcellular location  671–672 711 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index Index LipidXplorer  78, 273, 279–281, 285, 286, 628, 629 lipopolysaccharide (LPS)  318 15‐lipoxygenating  321 liquid chromatography (LC)  9, 91–107, 152, 295, 399, 428, 610, 648, 651 liquid chromatography mass spectrometry (LC‐MS)  126, 243, 264, 272, 512, 518–519, 558, 627, 690 liquid chromatography–tandem mass spectrometry (LC‐MS/ MS)  323–325, 328–330, 334, 337, 339, 340, 488–498, 690, 692 liquid‐liquid extraction (LLE)  549 Alshehry method  29 Bligh and Dyer (BD) method  27 Butanol:Methanol (BUME) method  28–29 Folch LLE method  24, 27 Matyash/methyl‐tert‐butyl ether (mTBE) method  28 modified Folch and Bligh/Dyer (BD) methods  27–28 Rose and Oaklander (RO) method  28 three‐phase lipid extraction (3PLE) method  29–30 lithocholic acid (LCA)  510, 511, 694 LOC  326 locally weighted scatter plot smoothing (LOWESS)  537 lower limit of quantitation (LLOQ)  266, 326 LUX Score  273, 282–284 lxPostman  273, 280–282 lysophosphatidylcholines (LPC)  43, 55, 57, 91, 92, 536 lysophospholipids (LPLs)  4, 18, 194, 230, 535, 593 m MALDI‐2, 122, 128 MALDI‐MSI approach  136 Mason–Schamp equation  154 mass distribution vectors (MDVs)  643, 644, 649, 651 mass spectrometers (MS)  15, 41, 53, 184, 185, 205, 228, 257, 274, 279, 518, 550, 615 mass spectrometric analysis electrospray ionization of lipids  56 high‐resolution mass spectrometers (HRMSs)  61–64 multidimensional mass spectrometry  61, 63 tandem mass spectrometry  57–61 mass spectrometry (MS)  91, 151, 183, 271, 601, 609 additives  54–55 deep structure determination  242–243 direct infusion workflows  50 exact mass  230–232 fragment spectra  232–242 ionization  18 isobars and type‐II isotopic overlap  49, 52 isomers  48–49 lipid analysis  and lipid concentration  54–55 lipid extraction  54 lipid structures analyzed by  46–48 preanalytics  50–54 sample derivatization  55 solvents  54–55 sphingolipids (SLs)  428 mass spectrometry imaging (MSI)  499 cell culture  119 of cholesterol and oxysterols in tissue  499, 500 electrospray ionisation  126–128 formalin fixation paraffin embedding  120 handling and storage  120 ion mobility  128–129 lipid identification for  132–137 matrix‐assisted laser desorption/ ionization  120–124 on‐tissue chemical derivatization  129–130 pre‐processing  119–120 quantification in  130–132 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 712 secondary ion mass spectrometry  124–126 sectioning and mounting  119 tissue samples  118 matrix‐assisted laser desorption/ ionization (MALDI)  2, 119–124, 127, 132, 133, 135, 137, 364, 428, 436, 440, 444, 447, 449, 452, 455, 458–460, 499, 614, 680 matrix‐assisted laser desorption ionization (MALDI)‐MS  125, 364 matrix‐assisted laser desorption/ ionization time‐of‐flight mass spectrometry (MALDI‐TOF/ MS)  689, 695 matrix associated laser desorption/ ionization (MALDI)  428 Matyash/methyl‐tert‐butyl ether (mTBE) method  28 mechanical shearing  21 metabolic age  662–664 metabolome genome‐wide association study (MGWAS)  540, 541 Metabolomics Standards Initiative (MSI)  275 methyl tert‐butyl ether (mTBE/ MTBE)  24, 28, 33, 54, 491, 549 minimally invasive diagnostic testing  568–569 mitochondrial fatty acid β‐oxidation  566–567 modified Folch and Bligh/Dyer (BD) methods  27–28 molecular fragmentation query language (MFQL)  78, 279, 280 molecular lipid fragments (MLF)  57, 60, 65, 69 monoacylglycerols (MAGs)  356 analysis  362 LC‐MS methods  357 softer ionization methods  357 monoacylglycerol (MGs)  351 monounsaturated fatty acid (MUFA)  294, 307, 428, 587, 588 mortar and pestle  20–21 MS technology  695–696 multi‐dimensional mass spectrometry‐ based shotgun lipidomics (MDMS‐SL)  61 multi‐omics  625 multiple precursor ion scans (MPIS)  57 multiple reaction monitoring (MRM)  260, 318, 324, 325, 369, 400, 437, 441, 443, 447, 456, 486, 489, 491–493, 497, 516, 521, 538, 559, 594 multi reaction monitoring (MRM) mode  431, 434, 435, 439, 449 n N‐acyl homoserine lactones (AHLs)  690, 691 N‐acyl phosphatidylethanolamine  416 N‐acyl phosphatidylserine  416 NAFLD/NASH  568–569 nanospray desorption electrospray ionization (nano‐DESI)  128 nanospray desorption electrospray ionization mass spectrometry  697 neurodegeneration  627, 662, 663, 673 neutral complex glycosphingolipids  447–450 neutral loss scans (NLS)  57, 63, 65, 81, 235, 369, 371, 397, 400, 647, 648 newborn screening (NBS) program  566, 567 nicotinic acid  490–492 15 N‐labelled sphingolipids  126 non‐alcoholic fatty liver disease (NAFLD)  377, 511, 512, 557, 568–569 nonaqueous reversed‐phase liquid chromatography (NARP‐ HPLC)  102–103, 105, 368, 596 non‐esterified fatty acids (NEFA)  293 non‐polar lipids  488, 658 normal‐phase liquid chromatography  94–95, 450, 592 713 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index Index o 1‐O‐acylceramides  427, 441–443 obstetric cholestasis (OC)  569 octadecylsilyl  536 olive oil  366, 372, 587, 594, 595 omega‐3  541, 588–593 omega‐6  541, 588–591, 594, 596 omics  2, 8, 78, 255, 260, 274, 275, 282, 585, 625, 626, 630–633, 635, 676, 678–680 on‐tissue chemical derivatization (OTCD)  129–130 Orbitrap  2, 41, 56, 61, 67, 72, 133, 135, 191, 227, 228, 231, 233, 244, 264, 454, 500, 519, 650, 651 organellar identity  672, 675 organic acid metabolism  566–567 oxidative stress, markers of  562, 563, 571 oxidized PL (oxPL)  322, 339, 340 oxygen attachment dissociation (OAD)  696 oxylipins  205, 233–234 experimental system, focusing on plasma and serum  321–322 handling plasma  322–323 LC‐MS/MS analytical method  324–327 to phospholipids  339–340 plasma extraction from  323–324 quality assessment and control  327 sample collection preparation and storage  321 urine metabolites  331–339 oxysterols  485 in blood plasma and serum  486 classical GC‐MS Methods  487–488 LC‐MS/MS analysis  488–489 mass spectrometry imaging (MSI)  499, 500 ozone‐induced dissociation (OzID)  9, 47, 136, 185, 188–192, 209, 242, 243, 248, 249, 307–308, 310, 375, 696 p parallel accumulation–serial fragmentation (PASEF)  161 partial equilibration  95 Paternò–Büchi (PB) reactions  136, 192–194, 199, 296, 308–309, 375, 446, 696 pathogen‐associated molecular patterns (PAMPs)  318 PGD2  334–336, 339 PGE2  317, 318, 322, 329, 330, 332, 334, 335, 339, 340 PGJ2  334 phosphatidic acids (PA)  18, 56, 133, 201, 235–237, 246, 260, 264, 396, 404, 406, 411–413, 415, 601–606, 641, 647, 691 phosphatidylcholines (PC)  5, 42, 43, 55, 91, 92, 128, 190–192, 200, 201, 203, 204, 208–210, 229, 260, 401, 444–446, 536, 548, 560, 595, 601, 629, 645, 670, 691 hierarchical annotation of  47 phosphatidylethanolamine (PE)  42, 43, 118, 119, 191, 205, 231, 260, 592, 595, 601, 645, 670, 691 lipid species of  46 phosphatidylglycerol (PG)  6, 55, 164, 235, 261, 412, 601, 647, 691 phosphatidylinositol and polyphosphoinositides  409–410 phosphatidylserine (PS)  42, 43, 118, 119, 261, 411–412, 592, 645, 670, 691, 696 phospholipase A (PLA)  18 phospholipase D (PLD)  18, 443, 602–604 phospholipids (PL)  234, 237, 322, 647 in flowering and diurnal metabolism  604–606 oxylipins to  339–340 phosphorus  602, 603, 608, 609 phosphorylated sphingoid bases  433–436 photodissociation  184, 187, 199–202, 204, 206 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 714 picolinic acid  242, 490, 491 picolinyl ester  296, 355 plasma analysis  79–80 plasmalogens  44, 48, 191, 231, 661, 673, 692 polyphosphoinositides (PPIs)  55, 56, 410 polyunsaturated fatty acids (PUFAs)  17, 127, 195, 201, 294, 317, 320, 323, 337, 369, 541, 561, 588, 590, 593, 594, 612 post‐ionization approaches  122, 129 Potter–Elvenhjem apparatus  20, 22 precursor ion scans (PIS)  57, 61, 63, 65, 71, 81, 186, 260, 397, 400, 647 principal component analysis (PCA)  283, 628 prostacyclin  318, 335–336 prostaglandins (PGs)  2, 128, 132, 317, 318, 321, 332–339, 365, 588, 691, 692 prostanoids/prostaglandins (PG)  317 PSI‐MS  274 push–pull‐protect approach  614 q quadrupole time‐of‐flight mass spectrometer (QTOF)  41, 57, 63, 191, 202, 203, 604–605 qualification phase  546 quality assessment and control  327 quality control (QC)  268, 287 validation and  550–551 quantitation error  551 quantitative‐MSI (Q‐MSI)  130, 132 quorum sensing  690 r rate of autoxidation  18 recrystallization methods  121 reference intervals  564, 565 reference measurement procedure (RMP)  565 regioisomers  99, 105, 164, 208, 210, 243, 337, 353, 354, 367, 372, 398, 399, 401, 403, 407–409, 411, 413, 415, 416, 596 relative standard deviation (RSD)  156, 266, 551 reproducibility issue  563–564 resuspension, lipidomic analysis  30–31 reversed‐phase (RP)  264, 328, 329 chromatography  92, 328, 433 reversed phase HPLC  228–230, 364, 437, 519 reversed‐phase liquid chromatography  9, 99–101 reversed‐phase liquid chromatography electrospray ionization triple quadrupole mass spectrometry  606 ring oxysterols  485 Rose and Oaklander (RO) method  28 rotor–stator  21 s saccharolipids  42, 351, 586, 694–695 saturated fatty acids (SFAs)  186, 195, 587, 594 secondary ion mass spectrometry (SIMS)  119, 124–126, 133, 458, 680 selected reaction monitoring (SRM) methods  234 shellfish  591 shotgun lipidomics  42, 56, 78, 82, 133, 151, 168, 169, 191, 244, 272, 273, 279, 285, 371, 377, 400, 405, 410, 439, 564, 630 shotgun MS  260, 262–264, 279 signal‐to‐noise (S/N) ratio  158, 165, 169, 172, 326, 635 silver ion chromatography  103–105, 353 simplified molecular‐input line‐entry system (SMILES) format  283 SIMS‐MSI  126, 133 single nucleotide polymorphisms (SNPs)  540–541 skin omega‐hydroxy ceramides  440–441 Skyline  276, 278 solid‐phase extraction (SPE)  32 solubilization, lipidomic analysis  30–31 specialist pro‐resolving mediators (SPM)  325, 330 715 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index Index specialist resolving mediators  324 sphingoid bases  425, 429, 433 phosphorylated  433–436 sphingolipids (SLs)  237, 241, 606, 693 biosynthesis pathways  460 imaging mass spectrometry (IMS) of  458–460 mass spectrometry  428 nomenclature  426–428 phosphorylated sphingoid bases  433–436 sphingoid bases  425, 429, 433 in vertebrates  429–456 sphingomyelins (SM)  231, 444, 446 stable heavy isotopes  642 stable isotope labeling  456, 458 sterol lipids (SL)  481 analytical challenges  486 in blood plasma and serum  486 in cells  483–484 classical GC‐MS methods  487–488 LC‐MS/MS analysis  488–489 dimethylglycyl esters  492–493 Girard hydrazine reagents  493–497 nicotinyl esters  491–492 4‐phenyl‐1,2,4‐triazoline‐3,5‐ dione  497 picolinyl esters  490–491 structure  482 sterols  29, 30, 36, 94, 129, 242, 482, 483, 485–491, 495–497, 501, 563, 586, 670, 679 steryl esters  500 structural heterogeneity  293 structure lossless ion manipulation (SLIM)  160–161, 167, 169, 172 sulfatides  126, 425, 426, 455–456, 459 supercritical fluid chromatography (SFC)   91, 97, 99, 366, 435, 512, 519 surface‐induced dissociation (SID)  184 syringe pump  55 t tandem IMS  160, 161 tandem mass spectrometry  48, 56, 65, 198, 428, 431, 439, 447, 449, 450, 455 targeted lipidomics  272, 273, 276, 278, 690 thaw mounting techniques  119 three‐phase lipid extraction (3PLE) method  24, 29–30 thromboxane  335–336 time‐aligned parallel (TAP) fragmentation  171, 172 time‐of‐flight (TOF)  61, 124, 152, 364, 519 analyzer  49, 133 tissue homogenization  20, 21 tissues analysis  80 toll‐like receptor (TLR4)  695 total ion chromatogram (TIC)  245, 520 total ion current (TIC) spectrum  244, 245 tracer lipidomics  642 experimental conditions  644–645 fatty acids  646–647 flux analysis  642–644 isotopic effects  649–651 lipidome‐wide tracer analysis  649–653 MS/MS analysis  652–653 phospholipids  647–649 stable heavy isotopes  642 tracer metabolomics  645, 653 transition or inclusion list  276 trapped‐ion mobility spectrometry (TIMS)  128, 151, 157–159, 161, 167, 171, 194, 243 traveling wave ion mobility spectrometry (TWIMS)  129, 151, 156–160, 169, 171, 243, 374 triacylglycerols (TAGs)  91, 229, 366, 368–369, 611 covalent adduct chemical ionization  369 ion mobility MS  374–375 lipidomic  375–379 Oz‐ID for  375 Paternò–Büchi reactions  375 quantification  367–369 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 716 structural information  366–367 triacylglycerol (TGs)  16, 42, 73, 91, 308, 351, 510, 522, 535, 565, 568, 586, 587, 593–596, 611, 627, 661 triple quadrupole MS (QqQ)  55–57, 62, 63, 67, 69, 72, 82, 324, 592, 593 type‐I isotopic effect  71, 73 type‐II isotopic overlap  50, 51 type‐II overlap, lipid identification  67–68 u ultrahigh‐performance liquid chromatography (UHPLC)  93, 97, 98, 191, 371 ultrahigh‐performance liquid chromatography (UHPLC)/ MS  97–100, 106, 264, 550, 552, 553 ultrahigh‐performance liquid chromatography triple quadrupole mass spectrometry (UHPLC‐MS/ MS) method  535, 536 ultrahigh‐performance supercritical fluid chromatography (UHPSFC)  92–94, 97, 99 ultraviolet photodissociation (UVPD)  137, 184, 199–201, 204, 206–208, 243, 249, 452, 696 unsaturated lipids electron‐induced dissociation of  202–204 photodissociation of  199–202 upper limit of quantitation (ULOQ)  266 urine oxylipin metabolites  331–339 UV light  189, 194, 199, 200, 243, 570 v vegetables  594, 595 vitamin D deficiency  570–571 and its metabolites  558–559 w whole‐genome sequence datasets  541 widely targeted metabolomics (WT‐Met) analysis  536, 538 717 Downloaded from https://onlinelibrary.wiley.com/doi/ by THU VIEN - Fiji - Hinari access , Wiley Online Library on [30/03/2023] See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Index

Ngày đăng: 30/03/2023, 15:21

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN