74 Chơng 7. tuốc BIN NHIềU TầNG 7.1. QUá TRìNH LàM VIệC CủA tuốc BIN NHIềU TầNG 7.1.1. Khái niệm Trong các nhà máy điện hoặc các trung tâm nhiệt điện, để kéo những máy phát điện công suất lớn thì phải có tuốc bin công suất lớn, nghĩa là tuốc bin phải làm việc với lu lợng hơi lớn, thông số hơi cao, nhiệt dáng lớn. Tuy nhiên, mỗi một tầng tuốc bin chỉ có thể đạt đợc hiệu suất cao nhất ở một nhiệt dáng nhất định, vì vậy với nhiệt dáng lớn, muốn đạt đợc hiệu suất cao thì phải cho hơi làm việc trong một dãy các tầng đặt liên tiếp nhau, tuốc bin nh vậy gọi là tuốc bin nhiều tầng. Trong tuốc bin nhiều tầng, tầng đầu tiên gọi tầng tốc độ, các tầng tiếp theo là tầng áp lực, sinh công. Tầng tốc độ thờng làm việc theo nguyên tắc xung lực, khi ra khỏi tầng hơi có tốc độ cao, động năng lớn sẽ sinh công trong các tầng tiếp theo. Ngoài ra nó còn làm nhiệm vụ điều chỉnh lu lợng hơi vào tuốc bin khi phụ tải thay đổi nên còn đợc gọi là tầng điều chỉnh. Các tầng áp lực có thể đợc chế tạo theo kiểu tầng xung lực hoặc phản lực. Tầng tốc độ có thể là tầng một cấp tốc độ hoặc có thể là tầng kép có hai cấp tốc độ. Tầng kép hai cấp tốc độ có một dãy ống phun với hai dẫy cánh động, giữa hai dãy cánh động có một dãy cánh hớng để chuyển hớng dòng hơi khi ra khỏi dãy cánh động thứ nhất. Tuốc bin loại này có u điểm là cấu tạo đơn giản, chắc chắn, giá thành rẻ, vận hành đơn giản, tuy nhiên hiệu suất thấp và công suất đơn vị nhỏ nên chỉ chế tạo để kéo các thiết bị phụ nh bơm nớc cấp, quạt khói, trục ép mía . . . . Tầng có hai cấp tốc độ đợc ứng dụng rộng rãi để làm tầng điều chỉnh của tuốc bin, đặc biệt là trong các tuốc bin thông số cao. Nó có khả năng tạo ra nhiệt giáng lớn nên có thể giảm bớt đợc số tầng đồng thời giảm đợc yêu cấu về độ bền của kim loại đối với các tầng hạ áp, làm giảm khối lợng và giá thành thiết bị. Nếu các tầng của tuốc bin làm việc theo nguyên tắc xung lực thì gọi là tuốc bin xung lực, nếu theo nguyên tắc phản lực thì gọi là tuốc bin phản lực Khi tuốc bin làm việc ở phạm vi nhiệt độ từ 400 0 C trở lên thì chọn nhiệt dáng đối với tầng tuốc bin xung lực khoảng từ 42-50 KJ/kg, đối với tầng tuốc bin phản lực khoảng từ 17-25 KJ/kg. Khi làm việc ở phạm vi nhiệt độ thấp hơn thì chọn nhiệt dáng đối với tầng tuốc bin xung lực khoảng từ 179-190 KJ/kg, đối với tầng tuốc bin phản lực khoảng từ 85-105 KJ/kg. Tuốc bin công suất lớn có thể có đến 40 tầng. 7.1.2. Nguyên lý làm việc của tuốc bin nhiều tầng 7.1.2.1. Tuốc bin xung lực nhiều tầng Trên hình 7.1. biểu diễn sơ đồ cấu tạo, sự thay đổi áp suất, thay đổi tốc độ dòng hơi và momen quay trong tuốc bin xung lực nhiều tầng. Đối với tuốc bin xung lực nhiều tầng, bánh tĩnh 2 đợc bố trí xen kẽ giữa hai bánh động 1. Trên bánh tĩnh có gắn ống phun 3, trên bánh động 1 có gắn cánh động 4 và các bánh động 1 này lắp 75 chặt trên trục tuốc bin. Dòng hơi đi qua ống phun 3, suất giảm áp từ p 0 đến p 1 , đồng thời tốc độ dòng hơi tăng từ C 0 đến C 1 . Hơi ra khỏi ống phun, đi vào các rãnh cánh động. Trong dãy cánh động, động năng của dòng hơi biến thành cơ năng, làm quay rôto tuốc bin, nên khi ra khỏi dãy cánh động, tốc độ giảm từ C 1 xuống C 2 . Dòng hơi ra khỏi tầng này sẽ tiếp tục đi vào các tầng tiếp theo và quá trình biến đổi năng lợng nh trên lại xẩy ra cho đến khi áp suất giảm xuống đến trị số áp suất hơi thoát p k ở cuối tuốc bin. ở tuốc bin xung lực nhiều tầng có công suất lớn, các tầng áp lực ở phần cao áp thờng đợc chế tạo theo kiểu tầng xung lực có độ phản lực nhỏ, từ = 0,02 - 0,05; còn các tầng ở phần hạ áp có độ phản lực tăng dần, có thể đạt đến = 0,2 - 0,5 (tầng cuối là tầng phản lực). Hình 7.1. Sơ đồ cấu trúc của tuốc bin xung Hình 7.2. Quá trình dãn nở của hơi lực nhiều tầng 1-bánh động; 2-bánh tĩnh trong tuốc bin xung lực nhiều tầng Từ đồ thị trên hình 7.1. ta thấy: Mômen quay M trên trục tuốc bin tăng dần theo chiều chuyển động của dòng hơi và bằng tổng các momen của các tầng trớc nó. Tốc độ C 1 của dòng hơi luôn luôn tăng lên trong dãy ống phun do sự biến đổi nhiệt năng thành động năng, còn trong dãy cánh động tốc độ của dòng luôn luôn giảm xuống do biến động năng thành cơ năng làm quay tuốc bin. Quá trình dãn nở của hơi trong tuốc bin xung lực nhiều tầng đợc biểu diễn trên hình 7.2, bao gồm nhiều quá trình dãn nở liên tục xảy ra trong các tầng, trong đó trạng thái cuối của tầng trớc là trạng thái đầu của tầng tiếp theo. Quá trình chuyển động của dòng hơi kèm theo quá trình giảm áp suất, tăng thể tích riêng một cách liên tục, vì vậy để đảm bảo cho dòng hơi chuyển động đợc liên tục, thì các tiết diện của 76 rãnh ống phun và rãnh cánh động cho hơi đi qua cũng phải tăng liên tục, có nghĩa là phải tăng đờng kính tầng và chiều cao cánh quạt một cách đều đặn. Vì tuốc bin xung lực nhiều tầng hơi chỉ dãn nở trong ống phun, không dãn nở trong cánh động nên đờng quá trình dãn nở trong các tầng trên đồ thị i-s là đờng gẫy khúc, nhảy bậc. 7.1.2.2. Tuốc bin phản lực nhiều tầng ở tuốc bin phản lực nhiều tầng, tất cả các tầng áp lực đều đợc chế tạo theo kiểu tầng phản lực. Tuốc bin phản lực cũng có thể chế tạo với công suất lớn nhng chỉ làm việc với thông số trung bình. Nhiệt giáng mỗi tầng đợc chọn nhỏ hơn ở tầng xung lực từ 1,8-2 lần, do đó với cùng công suất thì số tầng sẽ lớn hơn. Trong tuốc bin phản lực, tổn thất rò rỉ hơi qua khe hở giữa cánh động và thân tơng đối lớn do đó làm giảm hiệu suất của các tầng này. Hình 7.3. Sơ đồ cấu trúc của tuốc bin phản lực nhiều tầng Do làm việc theo nguyên tắc phản lực nên chênh lệch áp suất ở trớc và sau cánh động sẽ tạo ra lực dọc trục tơng đối lớn. Để giảm lực dọc trục ngời ta chế tạo roto 2 theo kiểu tang trống (không có các bánh động và bánh tĩnh), mục đích là giảm đợc lực dọc trục tác động lên rôto, các cánh động đợc gắn trực tiếp trên rôto, các 77 ống phun đợc gắn trực tiếp lên thân tuốc bin. ở phần cao áp, thể tích riêng của hơi từ tầng này qua tầng khác thay đổi chậm, do đó để đơn giản, ngời ta chế tạo thành từng cụm tầng có đờng kính trung bình và chiều cao cánh quạt nh nhau. Nhng ở phần hạ áp, thể tích hơi tăng nhanh thì đờng kính trung bình của cánh và chiều cao cánh phải đợc tăng liên tục. Hình 7.4. Quá trình dãn nở của hơi trong tuốc bin phản lực nhiều tầng 7.1.3. Ưu, nhợc điểm của tuốc bin nhiều tầng 7.1.3.1. Ưu điểm: Tuốc bin nhiều tầng có các u điểm sau đây: - Có thể chế tạo với nhiệt dáng lớn nên công suất lớn. - Do tuốc bin có nhiều tầng nên nhiệt dáng mỗi từng không lớn lắm, nghĩa là tốc độ ra khỏi ống phun cũng không lớn lắm. Theo điều kiện sức bền, bánh động có thể chế tạo với tôc độ vòng u = 300 m/s phù hợp vơi tỉ số u/ c1 tối u. Vì thế với tốc độ quay vừa phải vẫn có thể đảm bảo cho trị số x a = a C u ứng với hiệu suất của tầng là cực đại. Trên hình 7.3. biểu diễn sơ đồ cấu tạo, sự thay đổi áp suất thay đổi tốc độ dòng hơi và momen quay trong tuốc bin phản lực nhiều tầng. Vì quá trình điều chỉnh lu lợng hơi bằng ống phun có tổn thất bé, do đó ngời ta thờng áp dụng phơng pháp điều chỉnh hơi bằng ống phun trong tuốc bin phản lực nhiều tầng. Tầng điều chỉnh (tầng đầu tiên) của tuốc bin phản lực nhiều tầng đợc chế tạo theo kiểu xung lực có độ phản lực không quá 10%. Nếu nhiệt dáng tầng điều chỉnh nhỏ thì chế tạo tầng đơn, nếu nhiệt dáng lớn thì chế tạo tầng kép. Quá trình dãn nở của hơi trong tuốc bin phản lực nhiều tầng đợc biểu thị trên hình 7.4. ở đây quá trình dãn nở củ a hơi xẩy ra cả ở trong ống phun và cả trong cánh động, do đó đờng biểu diễn là mộ t đờng cong liên tục tơng đối đều đặn, không có nhảy bậc. 78 - Vì có nhiều tầng nên giữa các tầng dễ dàng bố trí các cửa trích hơi để gia nhiệt hâm nớc cấp, nâng cao hiệu quả kinh tế của chu trình nhiệt của nhà máy. - Sự giảm tốc độ dòng hơi và đờng kính của tầng làm tăng chiều cao của ống phun và cánh động dẫn đến giảm tỉ lệ tổn thất trên các cánh, nâng cao hiệu suất của tầng lên. - Tổn thất nhiệt của tầng trớc làm tăng nhiệt độ tức là tăng entanpi hơi vào tầng tiếp theo, nghĩa là tổn thất của tầng trớc có thể đợc sử dụng một phần vào tầng tiếp theo. Nhờ vậy tổng nhiệt dáng của tất cả các tầng sẽ lớn hơn nhiệt dáng của toàn tuốc bin. - Nếu nh phần truyền hơi có cấu trúc tốt thì động năng ra khỏi tầng trớc có thể sử dụng một phần hay hoàn toàn vào tầng tiếp theo. Nhờ vậy năng lợng phân bố trên các tầng đều tăng lên. 7.1.3.2. Nhợc điểm: - Tuốc bin nhiều tầng có tổn thất rò rỉ hơi tơng đối lớn: Do áp suất phần đầu tuốc bin lớn hơn áp suất khí quyển, nên hơi rò rỉ qua khe hở đầu trục phía trớc từ trong tuốc bin ra ngoài không khí qua khe hở giữa trục và thân. Ngoài ra còn có rò rỉ giữa các tầng theo khe hở giữa trục và bánh tĩnh, giữa thân và đỉnh cánh động. Những thành phần hơi rò rỉ này đều không tham gia sinh công trên cánh động do đó làm giảm hiệu suất, công suất của tuốc bin. Lợng hơi rò rỉ tăng dần theo thời gian do đó lực dọc trục cũng tăng dần. - Những tầng sau cùng của tuốc bin nhiều tầng sẽ làm việc trong vùng hơi ẩm do đó gây ra tổn thất bởi hơi ẩm, làm cho hiệu suất tuốc bin giảm. - Tuốc bin nhiều tầng cấu tạo phức tạp. 7.1.4. Hệ số hoàn nhiệt của tuốc bin nhiều tầng Nh trên đã phân tích, tổn thất của tầng trớc có thể đợc sử dụng một phần vào tầng tiếp theo, mức độ sủ dụng lợng nhiệt đó vào tầng tiếp theo đợc gọi là hệ số hoàn nhiệt. Để so sánh tuốc bin một tầng với tuốc bin nhiều tâng, ta xác định hệ số hoàn nhiệt bằng cách phân tích quá trình nhiệt theo 2 phơng án: khi tuốc bin là một tầng và khi tuốc bin là nhiều tầng với cùng thông số đầu và cuối. Quá trình nhiệt của tuốc bin đợc biểu diễn trên đồ thị T-s hình 7.5. Với áp suất đầu p 0 và cuối p 1 , nếu tuốc bin là một tầng và không có tổn thất thì quá trình dãn nở đẳng entropi của hơi trong tuốc bin đợc biểu diễn bằng đờng 44'4''4'''a. Nhiệt dáng lí tởng của tuốc bin khi đó đợc biểu diễn trên đồ thị T-s tơng đơng với diện tích 12344'4''4'''a1, bằng tổng nhiệt dáng lí tởng của các tầng khi làm việc theo quá trình đẳng entropi. H 0 = h 01 + h 02 + h 03 + h 04 (7-1) Giả sử tuốc bin gồm 4 tầng, quá trình dãn nở thực của hơi trong tuốc bin tiến hành theo đờng 4567b. Nhiệt giáng lí tởng của tầng thứ nhất bằng h 01 , tơng đơng với diện tích 22 3442. Tổn thất nhiệt của tầng đã làm tăng nhiệt độ hơi ra khỏi tầng thứ nhất từ T 4' đến T 5 . Hơi đi vào tầng thứ hai ở trạng thái 5 có nhiệt độ T 5 , 79 nghĩa là tổn thất nhiệt ở tầng đầu đã làm tăng nhiệt độ hơi vào tầng thứ hai. Tổn thất nhiệt này của tầng đầu đợc sử dụng một phần q 2 vào tầng thứ hai. Trên đồ thị hình 7.5, phần tổn thất nhiệt của tầng thứ nhất đợc sử dụng vào tầng thứ 2 là q 2 , đợc biểu diễn bằng diện tích 4'55'4''4' và nhiệt giáng lí tởng của tầng thứ hai bằng h * 02 = h 02 + q 2 . * i0 h = h 01 + h 02 + q 2 + h 03 + q 3 + h 04 + q 4 * i0 h = H 0 + Q (7-6) và đợc biểu diễn bằng diện tích 12344'55'66'771, trong đó: Q = q 2 + q 3 + q 4 là tổn thất nhiệt của các tầng trớc đợc sử dụng vào các tầng tiếp theo. H 0 là nhiệt giáng lí tởng của tuốc bin khi làm việc theo quá trình đẳng entropi 44a, đợc tính theo (7-1). Nh vậy khi có cùng thông số đầu và cuối thì nhiệt dáng lý tởng của tuốc bin nhiều tầng sẽ lớn hơn nhiệt dáng lý tởng của tuốc bin một tầng một lợng là Q, đây chính là một phần tổn thất nhiệt của các tầng trớc đợc sử dụng lại vào các tầng tiếp theo. Nhiệt dáng thực tế của mỗi tầng là: h i = * h 0 t td (7-7) Nhiệt dáng thực tế của tuốc bin nhiều tầng bằng tổng nhiệt dáng thực tế của các tầng: H i = h i = * h 0 t td = (h 0 + q) t td (7-8) Tơng tự nh vậy, phần tổn thất nhiệt của tầng thứ hai đợc sử dụng vào tầng thứ b a là q 3 , đợc biểu diễn bằng diện tích 4''66'4'''4'' và nhiệt giáng l í tởng của tầng thứ ba bằng h * 03 = h 03 + q 3 . Phần tổn thất nhiệt củ a tầng thứ ba đợc sử dụng vào tầng thứ t là q 4 , đợc biểu diễn bằng diện tích 4'''6'77'a4'' và nhiệt giáng lí tởng của tầng thứ t bằng h * 04 = h 04 + q 4 . Nhiệt dáng lý tởng của các tầng lần lợt là: * h 01 = h 01 (7-2) * h 02 = h 02 + q 2 (7-3) * h 03 = h 03 + q 3 (7-4) * 04 h = h 04 + q 4 (7-5) Tổng nhiệt dáng lý tởng của các tần g bằn g : Hình 7.5. Quá trình nhiệt của tuốc bin nhiều tần g 80 Nếu ta coi hiệu suất của tất cả các tầng tuốc bin đều bằng nhau thì: H i = t td (h 0 + q) = t td ( H 0 + Q) (7-9) Mặt khác hiẹu suất trong tơng đối của toàn tuốc bin có thể viết đợc: TB td = 0 H H i (7-10) Trong đó: Q là tổn thất nhiệt các tầng trớc đợc sử dụng vào các tầng sau, H 0 là nhiệt dáng lý tởng toàn tuốc bin, TB td là hiệu suất trong tơng đối của tuốc bin nhiều tầng, t td là hiệu suất trong tơng đối của một tầng tuốc bin, Thay (7-9) vào (7-10) ta có hiệu suất của tuốc bin nhiều tầng là: TB td = 0 H H i = 0 0 H )QH( t td + (7-11) TB td = ) H Q ( t td 0 1+ = t td (1 + ) (7-12) ở đây: đợc gọi là hệ số hoàn nhiệt = Q H 0 (7-13) Hệ số hoàn nhiệt là hệ số biểu thị mức độ sử dụng tổn thất nhiệt của tầng trớc vào các tầng tiếp theo. Tuốc bin càng nhiều tầng thì hệ số hoàn nhiệt càng lớn. Vì > 0, do đó TB td > t td , nghĩa là hiệu suất của tuốc bin nhiều tầng luôn luôn lớn hơn hiệu suất của tuốc bin một tầng. 7.1.5. ảnh hởng của độ ẩm đến sự làm việc của tuốc bin Hình 7.6. ảnh hởng của các giọt ẩm ở các tầng cuối. 81 Quá trình giãn nở của hơi trong tuốc bin nhiều tầng là quá trình giảm áp suất và nhiệt độ hơi. Càng về cuối tuốc bin, áp suất và nhiệt độ hơi càng giảm còn thể tích riêng và độ ẩm càng tăng, do đó số lợng và kích thớc các giọt ẩm trong hơi càng lớn. Từ tam giác tốc độ trên hình 7.6 ta thấy, khi ra khỏi ống phun, tốc độ các giọt ẩm C' 1 sẽ nhỏ hơn tốc độ dòng hơi C 1 . Vì tốc độ vòng u của chúng nh nhau, do đó các giọt ẩm đi vào rãnh cánh động với tốc độ w' 1 nhỏ hơn tốc độ của hơi w 1 , dới một góc ' 1 lớn hơn 1 đập vào lng cánh động, gây nên lực cản trở chuyển động quay của roto tuốc bin. Do vậy sự có mặt của các giọt ẩm, một mặt làm giảm hiệu suất của tuốc bin, mặt khác đập vào bề mặt cánh động, làm rỗ các bề mặt cánh. Khi roto quay, dới tác dụng của lực ly tâm các giọt ẩm tập trung ở phần đỉnh cánh nhiều hơn, do đó bề mặt phần đỉnh cánh bị rỗ nhiều hơn phần gốc cánh. Trong vận hành bình thờng cho phép duy trì độ ẩm hơi ở tầng cuối trong khoảng 8 đến 12%. Nếu nhiệt độ hơi mới giảm thì độ ẩm có thể tăng lên và đạt trị số đáng kể, khi đó có thể làm giảm hiệu suất của tầng sau cùng đến 0. 7.1.6. Sự rò rỉ hơi Khi khảo sát chuyển động của dòng hơi trong tầng tuốc bin, ta giả thiết toàn bộ lợng hơi đi qua tầng đều đi hết qua rãnh ống phun và rãnh cánh động, nhiệt năng của lợng hơi đó đã biến thành động năng và cơ năng trong tuốc bin. Thực tế không phải nh vậy, khi chuyển động trong phần truyền hơi của tuốc bin, luôn có một lợng hơi không đi qua rãnh ống phun mà đi qua khe hở giữa bánh tĩnh và trục tuốc bin. Lợng hơi này sẽ không tham gia quá trình biến nhiệt năng thành động năng. Hình 7-7. rò rỉ hơi trong tuốc bin Mặt khác có một lợng hơi không đi qua rãnh cánh động mà đi qua lỗ cân bằng trên bánh động và qua khe hở giữa thân tuốc bin và đỉnh cánh. Ngoài ra, do áp suất hơi phía đầu của tuốc bin lớn hơn áp suất khí quyển nên sẽ có một lợng hơi chảy từ trong tuốc bin ra ngoài khí quyển qua lỗ xuyên trục ở phía đầu tuốc bin. Toàn bộ lợng hơi này sẽ không tham gia quá trình biến động năng thành cơ năng, tức là 82 không sinh công trên cánh động, đợc gọi là lợng hơi rò rỉ và tổn thất này gọi là tổn thất rò rỉ hơi. Tổn thất rò rỉ hơi đợc biểu diễn trên hình 7.7. 7.2. CÂN BằNG LựC DọC TRụC TRONG tuốc BIN NHIềU TầNG Nh đã phân tích ở mục 6.3.1, lực của dòng hơi tác dụng lên các dãy cánh có thể phân ra hai thành phần: thành phần R u và thành phần R a . Thành phần R u theo hớng vuông góc với trục tuốc bin, sinh công có ích trên cánh động, tạo momen quay làm quay roto và kéo máy phát quay. Thành phần dọc trục R a (theo hớng chuyển động của dòng hơi) không tạo nên momen quay mà tạo nên lực đẩy roto dịch chuyển theo hớng dòng hơi, có thể làm cho roto và stato tuốc bin cọ xát vào nhau gây nguy hiểm cho tuốc bin. Lực dọc trục R a có thể tăng lên trong quá trình vận hành do các nguyên nhân sau: - Do chèn bánh tĩnh mòn nên lu lợng hơi rò rỉ qua đó tăng, làm tăng áp suất hơi trớc cánh động. - Do muối bám vào cánh động làm giảm tiết diện hơi đi qua, làm giảm lu lợng hơi qua rãnh cánh động, dẫn đến tăng áp suất trớc cánh động, làm tăng độ phản lực của tầng. Hình 7.8. Lực tác dụng trong tuốc bin Để giảm tác dụng của lực dọc trục lên các palê chắn, cần phải tìm phơng pháp cân bằng lực dọc trục bằng cách tạo nên lực có chiều ngợc với chiều lực dọc trục hoặc giảm sự chênh lệch áp suất trớc và sau cánh động theo các hớng sau đây. * Tăng đờng kính của vòng chèn đầu trớc của trục (hình 7.8) * Dùng các đĩa giảm tải gắn phía trớc tầng điều chỉnh (hình 7.8) * Đối với tuốc bin công suất lớn, ngời ta chế tạo tuốc bin nhiều thân và đặt các thân ngợc chiều nhau (hình 7.9) * Tạo các lỗ cân bằng áp lực trên các bánh động để giảm bớt chênh lệch áp suất trớc và sau bánh động (hình 7.10). 83 H×nh 7.9. Th©n tuèc bin ®Æt ng−îc chiÒu H×nh 7.10. Lç c©n b»ng [...]...7.3 CáC LOạI tuốc BIN hơi nớc Sản xuất phối hợp điện năng và nhiệt năng đạt đợc hiệu suất cao hơn rất nhiều so với sản xuất riêng lẻ nhiệt và điện Muốn đảm bảo việc sản xuất phối hợp điện năng và nhiệt năng thì phải dùng các tuốc bin vừa đảm bảo đợc 2 chức năng đó, nhà máy nh vậy gọi là trung tâm nhiệt điện ở trung tâm nhiệt điện thờng có 2 loại hộ dùng nhiệt: - Hộ công nghiệp dùng hơi... hạ áp đến áp suất pk, sinh ra trong phần hạ áp một lợng điện Nđ2, sau đó đi vào bình ngng 3 85 Trục của phần cao áp và hạ áp nối chung với trục máy phát điện, do đó điện năng sản xuất ra bao gồm điện năng phần cao áp và hạ áp sản xuất ra: Nđ = Nđ1 + Nđ2 (7-16) Lợng điện năng do phần cao áp sản xuất ra: Nđ1 = G1(i0 - in) tđT co.mp (7-17) Lợng điện năng do phần hạ áp sản xuất ra: Nđ2 = G2.(in - ik) tđT... đến áp suất pk, sản xuất ra một lợng điện N3 và đi vào bình ngng 3 ngng tụ lại thành nớc Tổng điện năng sản xuất ra trong cả ba phần cao áp, trung áp và hạ áp là: Nđ = Nđ1 + Nđ2 + Nđ3 (7-21) Trong đó: Lợng điện năng do phần cao áp sản xuất ra: Nđ1 = G1(i0 - in) tđT co.mp (7-22) Lợng điện năng do phần trung áp sản xuất ra: Nđ2 = G2(in iT) tđT co.mp (7-23) Lợng điện năng do phần hạ áp sản xuất ra: Nđ3... (7-14) ta thấy ở tuốc bin đối áp, công suất điện tuốc bin sản xuất ra phụ thuộc vào lợng hơi G đi qua tuốc bin tức là lợng hơi mà hộ tiêu thụ nhiệt yêu cầu, nói cách khác lợng điện sản xuất ra phụ thuộc lợng nhiệt hộ tiêu thụ yêu cầu Nh vậy muốn đảm bảo đồng thời đợc yêu cầu của cả phụ tải điện và nhiệt thì phải bổ sung thêm một tuốc bin ngng hơi để đảm bảo cung cấp điện khi hộ tiêu thụ nhiệt tạm ngừng dùng... cạnh đó phải có thiết bị giảm ôn giảm áp để đảm bảo lợng nhiệt cho hộ tiêu thụ khi tuốc bin đối áp không làm việc Tuy nhiên trong trung tâm nhiệt điện độc lập (không nối với mạng điện quốc gia hay khu vực), tuốc bin đối áp cũng không thông dụng vì trong một nhà máy có hai loại tuốc bin thì sơ đồ thiết bị sẽ phức tạp, khó vận hành 7.3.3 Tuốc bin ngng hơi có cửa trích điều chỉnh 7.3.3.1 Tuốc bin ngng hơi... đợc nhợc điểm của tuốc bin đối áp, phụ tải điện và nhiệt không phụ thuộc vào nhau Sơ đồ nguyên lý của tuốc bin ngng hơi có một cửa trích điều chỉnh đợc biểu diễn trên hình 7.15 ở tuốc bin ngng hơi có 1 cửa trích điều chỉnh, hơi quá nhiệt có thông số p0, v0, lu lợng G1 đi vào phần cao áp 1 giãn nở và sinh công ở trong đó đến áp suất pn, sản xuất ra một lợng điện tơng ứng là Nđ1 Hơi ra khỏi phần cao áp... hình 7.11 áp suất hơi ra khỏi tuốc bin pk nhỏ hơn áp suất khí quyển, thờng pk vào khoảng 0,004-0,04 tùy thuộc vào nhiệt độ môi trờng của từng vùng Tuốc bin ngng hơi thuần túy chỉ sản xuất đợc điện năng, lợng điện nó sản xuất ra là: Nđ = G.(i0 - ik).tđT co.mp (7-13) Trong đó : G là lu lợng hơi vào tuốc bin, i0 , ik là entanpi của hơi vào và ra khỏi tuốc bin ứng vơi áp suất p0 và pk tđT là hiệu suất... ứng vơi áp suất pk, Loại tuốc bin hơi này có thể dùng chạy phụ tải ngọn và điện sản xuất ra đợc nối lên mạng lới của vùng hoặc quốc gia Hình 7.13 tuốc bin ngng hơi Hình 7.14 tuốc bin ngng hơi có một cửa trich có hai cửa trích 1-phần cao áp của tuốc bin; 2-phần hạ áp của tuốc bin; 3-Bình ngng; 4-hộ tiêu thụ nhiệt; 5-Máy phát điện 86 7.3.3.2 Tuốc bin ngng hơi có hai cửa trích điều chỉnh Sơ đồ nguyên... cao áp dãn nở và sinh công ở trong đó đến áp suất pn , sản xuất ra một lợng điện Nđ1 Hơi ra khỏi phần cao áp có áp suất pn đợc trích cho hộ dùng nhiệt công nghiệp một lợng là Gn (đi tới hộ dùng nhiệt), phần còn lại G2 tiếp tục đi vào phần trung áp của tuốc bin dãn nở sinh công ở trong đó đến áp suất pT, sản xuất ra một lợng điện Nđ2 khi đi ra khỏi phần trung áp hơi đợc tách làm hai phần, phần GT cung... nhiệt, pn đợc gọi là áp suất đối áp, thờng lớn hơn áp suất khí quyển ở tuốc bin đối áp, hơi đi vào tuốc bin dãn nở từ áp suất p0 đến áp suất pn, sinh công trong tuốc bin để kéo máy phát sản xuất điện năng Lợng điện máy phát sản xuất ra là: Nđ = G.(i0 - in).tđT co.mp (7-14) ở đây: i0 và in là entanpi của hơi vào và ra khỏi tuốc bin ứng vơi áp suất p0 và pn Hơi có áp suất pn đến hộ tiêu thụ nhiệt cấp cho