1. Trang chủ
  2. » Tất cả

Luận văn thạc sĩ một số tính chất số học của hệ số nhị thức

42 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THỦY MỘT SỐ TÍNH CHẤT SỐ HỌC CỦA HỆ SỐ NHỊ THỨC LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên 2016 c ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THỦ[.]

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THỦY MỘT SỐ TÍNH CHẤT SỐ HỌC CỦA HỆ SỐ NHỊ THỨC LUẬN VĂN THẠC SĨ TOÁN HỌC Thái Nguyên - 2016 c ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THỦY MỘT SỐ TÍNH CHẤT SỐ HỌC CỦA HỆ SỐ NHỊ THỨC LUẬN VĂN THẠC SĨ TỐN HỌC Chun ngành: Phương pháp Tốn sơ cấp Mã số: 60 46 01 13 NGƯỜI HƯỚNG DẪN KHOA HỌC TS NGUYỄN DUY TÂN Thái Nguyên - 2016 c i Mục lục Lời nói đầu 1 Định lý Kummer Định lý Lucas 1.1 Định lý Kummer 1.1.1 Hệ 1.2 Định lý Lucas 1.2.1 Hệ Hệ số nhị thức modulo lũy thừa nguyên tố 15 2.1 Mở rộng định lý Wilson 15 2.2 2.3 Một mở rộng định lý Lucas Hệ số nhị thức modulo lũy thừa nguyên tố 18 21 2.4 Ví dụ ứng dụng 24 Định lý Wolstenholme 3.1 Định lý Wolstenholme 27 27 3.2 31 Mở rộng Định lý Wolstenholme Kết luận 38 Tài liệu tham khảo 39 c Lời nói đầu Đồng dư số học chủ đề cổ điển ẩn chứa nhiều kết đẹp đẽ sâu sắc, thu hút nghiên cứu nhà tốn học Tính chất đồng dư hệ số nhị thức số Khởi đầu từ phát biểu nhà tốn ¨ học người Đức Ernst Kummer báo "Uber die Ergăanzungssăatze zu den allgemeinen Reciprocităatsgesetzen" cụng b nm 1852, người ta bắt đầu quan tâm đến đồng dư theo modulo nguyên tố hệ số nhị thức, ý nghĩa theo biểu diễn số nguyên tố Nếu phát biểu Kummer nghe cịn tương đối mơ hồ đến năm 1878, nhà tốn học Pháp Édouard Lucas serie báo đăng American Journal of Mathematics, Théorie des Fonctions Numériques Simplement Périodiques, phát biểu cách tường minh cho mối liên hệ đồng dư theo modulo nguyên tố hệ số nhị thức với tích hệ số nhị thức tạo thành từ chữ số biểu diễn thành phần hệ số nhị thức theo số số ngun tố Khơng dừng lại việc phát biểu tường minh, kết Lucas làm tiền đề tạo cảm hứng cho mở rộng Anton (1969), Stickelberger (1890) Hensel (1902) Vẫn dựa biểu diễn thành phần hệ số nhị thức theo số nguyên tố, họ xem xét tính chất đồng dư theo số nguyên tố hệ số nhị thức sau chia cho lũy thừa bậc cao số nguyên tố chia hết Đây kết đặc sắc, suốt 112 năm từ sau Định lý Lucas, khơng có thêm mở rộng nữa, Granville nâng modulo từ số nguyên tố thành lũy thừa Một hướng mở rộng khác Định lý Lucas loại bỏ biểu diễn theo số nguyên tố mà liên kết trực tiếp số nguyên tố, số thành phần hệ số nhị thức bậc lũy thừa cao chia hết hệ số nhị thức c số nguyên tố Bắt đầu từ kết Charles Babbage (1819) - mở rộng lên lũy thừa bậc hai cho hệ đặc biệt Định lý Lucas - sau Joseph Wolstenholme mở rộng kết lên bậc ba Được gợi ý từ kết này, Ljunggren (1949) chứng minh kết kiểu Lucas, hệ số nhị thức hai bội số nguyên tố đồng dư với hệ số nhị thức gồm hai thành phần thu sau chia bội cho số nguyên tố kia, theo modulo lũy thừa bậc ba số nguyên tố Kết cuối E Jacobsthal mở rộng kết Ljunggren lên lũy thừa bậc cao Luận văn có cấu trúc sau: Mở đầu, ba chương, Kết luận Tài liệu tham khảo Chương 1: Định lý Kummer Định lý Lucas Chương phát biểu chứng minh hai định lý trên, kèm theo hệ quả, chứng minh chúng số tập ứng dụng Chương 2: Hệ số nhị thức modulo lũy thừa nguyên tố Chương trình bày hai mở rộng Định lý Wilson, mở rộng Định lý Lucas cuối kết Granville hệ số nhị thức modulo lũy thừa nguyên tố Chương 3: Định lý Wolstenholme Trình bày kết đồng dư hệ số nhị thức với thành phần nguyên tố modulo lũy thừa nguyên tố, từ kết Charles Babbage, tới Định lý Wolstenholme mở rộng Định lý Ljunggren Luận văn thực hoàn thành vào tháng năm 2016 trường Đại học Khoa học- Đại học Thái Nguyên Qua đây, tác giả xin bày tỏ lòng biết ơn sâu sắc tới TS Nguyễn Duy Tân, người tận tình hướng dẫn suốt q trình làm việc để hồn thành luận văn Tác giả xin gửi lời cảm ơn chân thành đến Khoa Toán, Trường Đại học Khoa học- Đại học Thái Nguyên, tạo điều kiện để giúp tác giả học tập hoàn thành luận văn chương trình thạc sĩ.Tác giả xin gửi lời cảm ơn tới tập thể lớp cao học YB, khóa 06/2014 - 06/2016 động viên giúp đỡ tác giả trình học tập hồn thành luận văn này.Đồng thời tác giả c xin gửi lời cảm ơn tới Sở GD-ĐT tỉnh Yên Bái, Ban giám hiệu đồng nghiệp trường THPT Sơn Thịnh tạo điều kiện cho tác giả suốt trình học tập hoàn thành luận văn Tác giả Bùi Thị Thủy c Chương Định lý Kummer Định lý Lucas Trong chương giới thiệu Định lý Kummer Định lý Lucas, phép chứng minh với ví dụ minh họa số tập ứng dụng hai định lý 1.1 Định lý Kummer ă Nm 1852, nh toỏn hc c Ernst Kummer bi bỏo "Uber die Ergăanzungssăatze zu den allgemeinen Reciprocităatsgesetzen" ó ch rng nh lý 1.1.1 (Kummer) Cho p số nguyên tố, m ≤ n hai số tự nhiên Khi đó, số tự nhiên k lớn cho pk ước hệ số nhị thức n m số lần nhớ cộng m n − m theo số p Gọi bxc phần nguyên số thực x Cho p số nguyên tố Ta ký hiệu v p (n) cho số mũ lũy thừa cao p chia hết n, σ p (n) tổng chữ số n viết theo số p Bổ đề 1.1.2 (Legendre) Cho n ≥ số tự nhiên p số nguyên tố Khi n − σ p (n) n v p (n!) = ∑ b i c = p p − i≥1 Chứng minh Vì n! tích tất số tự nhiên từ đến n nên với bội n p số từ đến n ta thừa số p có b c p n Tương tự, từ bội p , ta có thêm b c thừa số p Do lũy thừa p n cao p chia hết n! ∑i≥1 b i c p c Giả sử n = n0 + n1 p + + nt pt biểu diễn n theo số p Khi ta có   t n v p (n!) = ∑ b i c = ∑ (nt pt−i + · · · + ni+1 p + ni ) p i=1 i≥1 t t t = ∑ ∑ njp = j−i i=1 j=i t pj −1 ∑ nj p−1 = = j=1 = p−1 j ∑ ∑ n j p j−i j=1 i=1 t pj −1 ∑ nj p−1 j=0 t ∑ (n j p j − n j ) = j=0 n − σ p (n) p−1 Chứng minh Định lý Kummer Giả sử n = m+r Ta viết ba số theo số p: n = n0 + n1 p + · · · + nt pt , tương tự cho m r Đặt ε j = cộng m r theo số p có nhớ chữ số thứ j, ε j = nhớ Dễ thấy n0 = m0 + r0 − pε0 n j = m j + r j + ε j−1 − pε j với j ≥ Khi đó, theo cơng thức ta có   n vp = v p (n!) − v p (m!) − v p (r!) m n − σ p (n) m − σ p (m) r − σ p (r) = − − p−1 p−1 p−1 t mj +rj −nj σ p (m) + σ p (r) − σ p (n) = =∑ p−1 p−1 j=0 = pε0 + ∑tj=1 pε j − ε j−1 p−1 t = ∑ ε j j=0 số phép nhớ cộng m n − m theo số p Chứng minh hồn tất Ví dụ 1.1.3 Lấy n = 32, m = 18 Biểu diễn theo số p = ta có 32 = 1125 , 18 = 335 , 14 = 245 Dễ thấy phép cộng 335 + 245 có hai lần nhớ c Mặt khác 32 18 = 471435600 = 18877424, v p   32 18 = 2, số lần nhớ 1.1.1 Hệ Dưới số hệ Định lý Kummer  Hệ 1.1.4 Với n số nguyên dương, nk ≡ ( mod n) với ước nguyên tố p ước nguyên tố n mà v p (n) = a, phép trừ n − k theo số p cần a phép mượn  Chứng minh Chú ý nk ≡ ( mod n) n k ≡0 ( mod pa ),  với ước nguyên tố p n với v p (n) = a Theo Định lý Kummer, nk ≡ 0( mod pa ) phép trừ n cho k số p cần a phép mượn Hệ 1.1.5 Nếu m, n, k số nguyên dương thỏa mãn gcd(n, k) =  mn k ≡ ( mod n) Chứng minh Giả sử p ước nguyên tố n với v p (n) = a Ta viết k = k0 + k1 p + + kt pt số p Vì gcd(n, k) = nên k0 6= Chú ý mn = mn0 pa với số nguyên n0 Do phép trừ mn cho k theo  số p phải có a phép nhớ Theo Định lý Kummer ta có mn k ≡  mn ( mod pa ) Vì p ước nguyên tố n nên k ≡ ( mod n) 1.2 Định lý Lucas Năm 1878, Lucas đưa phương pháp để tính Lucas phát biểu sau n m ( mod p) Định lý Định lý 1.2.1 Cho m, n hai số tự nhiên, p số nguyên tố Giả sử m, n có biểu diễn theo số p dạng m = m0 + m1 p + · · · + ms ps , n = n0 + n1 p + · · · + ns ps với ≤ mi , ni ≤ p − 1,   s   n ni ≡∏ ( mod p) m i=0 mi c Ta chứng minh định lý Trước tiên ta có định nghĩa sau Định nghĩa 1.2.2 Cho đa thức f (X) = a0 + a1 X + · · · + an X n ∈ Z[X] Ta viết f (X) ≡ 0( mod p) ≡ 0( mod p) với i = 1, , n Với hai đa thức f (X) g(X) Z[X], ta viết f (X) ≡ g(X)( mod p) f (X) − g(X) ≡ 0( mod p) i i Bổ đề 1.2.3 Với i ≥ 0, ta có (1 + X) p ≡ + X p ( mod p) Chứng minh Ta chứng minh quy nạp theo i Với i = khẳng định hiển nhiên Giả sử khẳng định với i ≥ Ta có (1 + X) pi+1  p pi ≡ 1+X ( mod p) p−1   i+1 p pi k ≡ 1+ ∑ X + X p ( mod p) k=1 k ≡ 1+Xp ta có p | p k i+1 ( mod p), với k = 1, , p − Chứng minh Định lý Lucas Ta có n   n s  n m n pi i X = (1 + X) = (1 + X) ∑ ∏ i=0 m=0 m ! ni   s s i i n i ≡ ∏(1 + X p )ni = ∏ ∑ X mi p ( mod p) i=0 mi =0 mi i=0 ! p−1   s i ni =∏ ∑ X mi p i=0 mi =0 mi ! n s   ni = ∑ ∏ X m ( mod p) m=0 i=0 mi Đồng hệ số hai vế ta n ni  s ≡ ∏ i=0 mi m ( mod p) Ví dụ 1.2.4 Với n = 57, m = 32, p = 5, ta có n = 57 = 2125 , m = 32 = 1125  2 1 2 Dễ thấy 57 = 9929472283517787 ≡ ( mod 5), 32 1 =2≡ 57 2 1 2 ( mod 5), 32 ≡ 1 ( mod 5) c ...ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC BÙI THỊ THỦY MỘT SỐ TÍNH CHẤT SỐ HỌC CỦA HỆ SỐ NHỊ THỨC LUẬN VĂN THẠC SĨ TOÁN HỌC Chuyên ngành: Phương pháp Toán sơ cấp Mã số: 60 46 01 13... cách tường minh cho mối liên hệ đồng dư theo modulo nguyên tố hệ số nhị thức với tích hệ số nhị thức tạo thành từ chữ số biểu diễn thành phần hệ số nhị thức theo số số nguyên tố Không dừng lại... (1902) Vẫn dựa biểu diễn thành phần hệ số nhị thức theo số nguyên tố, họ xem xét tính chất đồng dư theo số nguyên tố hệ số nhị thức sau chia cho lũy thừa bậc cao số nguyên tố chia hết Đây kết đặc

Ngày đăng: 11/03/2023, 08:37

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN