1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán thpt lớp 12 (192)

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 112,77 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị của giới hạn lim 2 − n n + 1 bằng A −1 B 0 C 1[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2−n Câu Giá trị giới hạn lim n+1 A −1 B x+2 bằng? Câu Tính lim x→2 x A B C D C D Câu Cho f (x) = sin x − cos2 x − x Khi f (x) A −1 + sin x cos x B −1 + sin 2x C − sin 2x 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 C x−3 Câu [1] Tính lim bằng? x→3 x + A −∞ B C +∞ 2n + Câu Tìm giới hạn lim n+1 A B C D Câu Giá trị lim(2x − 3x + 1) x→1 A +∞ B D D + sin 2x D −4 D C Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C lim+ f (x) = lim− f (x) = a D lim f (x) = f (a) x→a x→a x→a x −1 Câu Tính lim x→1 x − A +∞ B −∞ Câu 10 Giá trị lim (3x − 2x + 1) x→1 A B +∞ C D C D Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [−1; 0] C m ∈ [0; 4] D m ∈ [0; 1] log(mx) Câu 13 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > √ √ Câu 14 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B ≤ m ≤ C m ≥ D < m ≤ 4 Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 6) C (1; 3; 2) D (2; 4; 4) 2 Trang 1/5 Mã đề √ Câu 16 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 64 C 63 D 62 Câu 17 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D Câu 18 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 13 B 13 C log2 2020 D 2020 Câu 19 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ − xy Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 11 + 19 18 11 − 29 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 Câu 21 Dãy số sau có giới hạn khác 0? sin n n+1 1 A B C √ D n n n n 12 + 22 + · · · + n2 Câu 22 [3-1133d] Tính lim n3 A B 3 Câu 23 Dãy số sau có giới hạn 0? n2 − − 2n A un = B un = 5n − 3n 5n + n2 Câu 24 Tính lim A C D +∞ n2 − 3n C un = n2 n2 + n + D un = (n + 1)2 2n2 − 3n6 + n4 B C 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C 2 D ! Câu 26 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ ! 1 + + ··· + Câu 27 Tính lim 1.2 2.3 n(n + 1) A B n−1 Câu 28 Tính lim n +2 A B C +∞ C D un D D C D ! 3n + 2 Câu 29 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Trang 2/5 Mã đề Câu 30 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C a D A B a Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a B 2a C a D A Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D 0 0 Câu 35.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a B C D A 2 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B √ C D √ 2 2 a +b a +b a +b a2 + b2 d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 13 16 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a a 38 3a 58 3a 38 A B C D 29 29 29 29 [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Trang 3/5 Mã đề Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx = f (x) C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Z D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A Z B [ f (x) − g(x)]dx = f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 43 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B dx = x + C, C số A Z x Z xα+1 + C, C số C 0dx = C, C số D xα dx = α+1 Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II) Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trang 4/5 Mã đề Trong hai câu A Cả hai câu sai B Chỉ có (II) Câu 48 Z Các khẳng định sau Z sai? C Cả hai câu D Chỉ có (I) Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C B f (x)dx = F(x) +C ⇒ !0 Z Z Z f (x)dx = f (x) C k f (x)dx = k f (x)dx, k số D Z A f (u)dx = F(u) +C Câu 49 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Cả hai sai D Chỉ có (II) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B A B B C D D 10 A 11 D 12 B B 13 B 14 15 B 16 17 D 18 A 19 D 20 A 21 B 22 A 23 B 24 25 C 26 27 C 28 29 A D 34 35 A 36 D 37 39 C 41 A 43 49 B D C 32 33 A 47 D 30 A 31 45 D D B D B C 38 B 40 B 42 D 44 D 46 A C D 48 B 50 B ... C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B A B B C D D 10 A 11 D 12 B B 13 B 14 15 B 16 17 D 18 A 19 D 20 A 21 B 22 A 23 B 24... G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C Cả ba mệnh đề D (I) (II)... a.√Khoảng cách từ A đến (S BC) √ √ a 57 2a 57 a 57 A B C a 57 D 17 19 19 Trang 3/5 Mã đề Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z B f (x)dx =

Ngày đăng: 10/03/2023, 23:48

w