1. Trang chủ
  2. » Tất cả

Đề ôn thi môn toán thpt lớp 12 (144)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 117,55 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim f (x) = f (a) B f (x) có giới hạn hữu hạn x → a x→a C lim+ f (x) = lim− f (x) = a x→a x→a x+1 Câu Tính lim x→−∞ 6x − B A D lim+ f (x) = lim− f (x) = +∞ x→a C x→a D Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim+ f (x) = f (a) lim+ f (x) = f (b) B lim− f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim− f (x) = f (a) lim+ f (x) = f (b) x+1 x→+∞ 4x + A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −1 B x→a x→b x→a x→b D lim+ f (x) = f (a) lim− f (x) = f (b) Câu Tính lim C D C D −4 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu !Dãy số sau có giới !n hạn 0? n A B e !n C Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A − sin 2x B −1 + sin x cos x C −1 + sin 2x √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C − 4 2−n Câu 10 Giá trị giới hạn lim n+1 A −1 B C !n D − D + sin 2x D D Câu 11 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B ;3 C [3; 4) D 2; 2 Câu 12 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm √ ab D Trang 1/5 Mã đề Câu 13 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x−3 x−2 x−3 x−2 Câu 14 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B C Vô nghiệm D 1 Câu 15 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = −e − C xy0 = ey − D xy0 = ey + Câu 16 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 4) B (1; 3; 2) C (2; 4; 3) D (2; 4; 6) Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m ≥ C m ≤ D m > log(mx) = có nghiệm thực Câu 18 [1226d] Tìm tham số thực m để phương trình log(x + 1) A m < ∨ m > B m < ∨ m = C m ≤ D m < q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [0; 4] Câu 20 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ cos n + sin n Câu 21 Tính lim n2 + A −∞ B C D +∞ + + ··· + n Câu 22 [3-1132d] Cho dãy số (un ) với un = Mệnh đề sau đúng? n2 + A lim un = B Dãy số un khơng có giới hạn n → +∞ C lim un = D lim un = 7n2 − 2n3 + Câu 23 Tính lim 3n + 2n2 + A B - C D 3 12 + 22 + · · · + n2 Câu 24 [3-1133d] Tính lim n3 A B +∞ C D 3 ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 26 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 27 Dãy số sau có giới hạn 0? − 2n n2 − B un = A un = 5n − 3n 5n + n2 n2 + n + D un = (n + 1)2 ! 3n + 2 Câu 28 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D C un = n2 − 3n n2 Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 30 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) C D B lim qn = với |q| > D lim = với k > nk √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ a 38 3a 58 3a 3a 38 B C D A 29 29 29 29 d = 120◦ Câu 32 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B 4a C D 3a Câu 33 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ a a A B 2a C a D 3a Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a A B C D 3 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD a b2 + c2 abc b2 + c2 b a2 + c2 c a2 + b2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Trang 3/5 Mã đề [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ 2a 57 a 57 a 57 A B C D a 57 19 17 19 0 0 Câu 37.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 26 16 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C D A √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Câu 42 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 43 Trong khẳng định sau, khẳng định sai? A Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) D dx = log |u(x)| + C u(x) Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn Trang 4/5 Mã đề (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 47 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B 0dx = C, C số A xα dx = α+1 Z Z dx = ln |x| + C, C số D dx = x + C, C số C x Câu 48 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = f (x) f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) xác định K B f (x) liên tục K D f (x) có giá trị nhỏ K Câu 50 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A D B C C 11 B C 10 A D 14 A 16 C B 18 D B 20 19 A 21 23 B 12 A 13 17 B 15 C C 22 C 24 B 25 D D 26 C C 27 B 28 B 29 B 30 B 31 C 32 33 A 34 35 A 36 A 37 D 40 A 41 A 42 A 43 D 44 45 D 46 A 47 A 49 D 38 A C 39 C B 48 A B 50 C ... - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A D B C C 11 B C 10 A D 14 A 16 C B 18 D B 20 19 A 21 23 B 12 A 13 17 B 15 C C 22 C 24 B 25 D D 26 C C... + n A B C D +∞ 2 Câu 26 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim...Câu 13 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x−3 x−2 x−3 x−2 Câu 14 [122 12d] Số nghiệm phương trình

Ngày đăng: 10/03/2023, 23:46

w