Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A 2 B 1 C 1 2 D −1[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 2x + x→+∞ x + B Câu Tính giới hạn lim A C D −1 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −4 C −1 D x+1 Câu Tính lim x→−∞ 6x − 1 B C D A Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim f (x) = f (a) x→a x→a x→a C f (x) có giới hạn hữu hạn x → a x2 − 12x + 35 x→5 25 − 5x A −∞ B 2n − Câu Tính lim 2n + 3n + A +∞ B D lim+ f (x) = lim− f (x) = a x→a x→a Câu Tính lim Câu Dãy số! có giới hạn 0? n −2 B un = n2 − 4n A un = 2−n Câu Giá trị giới hạn lim n+1 A −1 B − 2n Câu [1] Tính lim bằng? 3n + A B 3 x−3 Câu 10 [1] Tính lim bằng? x→3 x + A +∞ B −∞ C − D +∞ C D −∞ n3 − 3n C un = n+1 !n D un = C D C D − C Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B C D 3|x−1| = 3m − có nghiệm D Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A ;3 B (1; 2) C 2; D [3; 4) 2 √ ab Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D q Câu 15 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 2] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 4] log 2x Câu 16 [1229d] Đạo hàm hàm số y = x2 − ln 2x 1 − ln 2x − log 2x A y0 = B y0 = C y0 = D y = x ln 10 2x ln 10 2x3 ln 10 x3 Câu 17 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 3) B (2; 4; 4) C (2; 4; 6) D (1; 3; 2) Câu 18 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m > C m ≤ D m < Câu 19 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C log2 2020 D 13 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e − C xy0 = −ey + D xy0 = −ey − Câu 20 [3-12217d] Cho hàm số y = ln A xy0 = ey + 12 + 22 + · · · + n2 Câu 21 [3-1133d] Tính lim n3 B A Câu 22 Dãy số sau có giới hạn khác 0? 1 A √ B n n C +∞ D n+1 n ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D ! 1 + ··· + Câu 24 [3-1131d] Tính lim + 1+2 + + ··· + n A +∞ B C D 2 Câu 25 Tính lim n+3 A B C D Câu 26 Phát biểu sau sai? A lim un = c (Với un = c số) C lim √ = n 1 Câu 27 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C sin n n D B lim qn = với |q| > 1 D lim k = với k > n ! C D Trang 2/5 Mã đề Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = > với n lim = −∞ = +∞ lim = a > lim(un ) = +∞ ! un = a > lim = lim = +∞ ! un = a , lim = ±∞ lim = Câu 29 Tính lim A - 7n2 − 2n3 + 3n3 + 2n2 + B Câu 30 Dãy số sau có giới hạn 0? n2 − 3n − 2n B u = A un = n 5n + n2 n2 C C un = D n2 − 5n − 3n2 D un = n2 + n + (n + 1)2 √ Câu 31 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 a 38 3a 38 3a B C D A 29 29 29 29 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C a D Câu 33 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường√thẳng BD0 √ √ √ abc b2 + c2 a b2 + c2 c a2 + b2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a a 5a 2a A B C D 9 9 3a Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 Câu 37 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab A √ B C D √ √ a + b2 a2 + b2 a2 + b2 a2 + b2 Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C D a A 2 d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C a D A 2a Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Cả hai C Chỉ có (II) Câu 42 Z Các khẳng định sau Z sai? A Z C f (x)dx = F(x) +C ⇒ !0 f (x)dx = f (x) f (u)dx = F(u) +C B Z Z D k f (x)dx = k D Chỉ có (I) Z f (x)dx, k số Z f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 43 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B Câu 44 Hàm số f có nguyên hàm K A f (x) liên tục K C f (x) xác định K C D B f (x) có giá trị nhỏ K D f (x) có giá trị lớn K Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B Cả ba câu sai C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 46 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ [a; b], ta có F (x) = f (x) Trang 4/5 Mã đề Câu 47 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (III) sai B Khơng có câu C Câu (II) sai D Câu (I) sai sai Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? A [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z B [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z C f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Câu 49 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx f (x)g(x)dx = B Z D Câu 50 Z Trong khẳng định sau, khẳng định sai? Z 0dx = C, C số A Z C B dx = ln |x| + C, C số x Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx dx = x + C, C số xα+1 x dx = + C, C số α+1 α - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi A C B C A 10 D 11 A D 12 A 14 B 15 C 16 A 17 C 18 A 19 B A 13 D 20 B D 21 D B D 22 23 A 24 25 D 26 27 D 28 29 A C B C 30 A 31 B 32 33 B 34 35 A B C 36 A 37 38 C 39 D 41 40 C 43 D C 42 A D 44 A 45 A 46 C 47 B 48 D 49 B 50 D ... số α+1 α - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi A C B C A 10 D 11 A D 12 A 14 B 15 C 16 A 17 C 18 A 19 B A 13 D 20 B D 21 D B D 22 23... B C sin n n D B lim qn = với |q| > 1 D lim k = với k > n ! C D Trang 2/5 Mã đề Câu 28 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un B Nếu lim un C Nếu lim un D Nếu lim un ! un = a < lim = >...Câu 14 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D q Câu 15 [122 16d] Tìm tất giá trị thực tham số m để phương trình