Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim √ 4n2 + 1 − √ n + 2 2n − 3 bằng A 1 B +∞ C 3[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi √ √ 4n2 + − n + Câu Tính lim 2n − A B +∞ − 2n bằng? 3n + A B x−2 Câu Tính lim x→+∞ x + A − B −3 x+1 Câu Tính lim x→+∞ 4x + A B C D Câu [1] Tính lim C − D C D 1 D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim+ f (x) = lim− f (x) = +∞ x→a x→a C lim f (x) = f (a) D lim+ f (x) = lim− f (x) = a x→a x→a x→a √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B − C D 4 1−n Câu [1] Tính lim bằng? 2n + 1 1 B C D A − 2 2n − Câu Tính lim 2n + 3n + A −∞ B C +∞ D x − 5x + Câu Tính giới hạn lim x→2 x−2 A B C D −1 2n + Câu 10 Tìm giới hạn lim n+1 A B C D Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ C Câu 12 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 13 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? Trang 1/5 Mã đề A B C D Câu 14 [1225d] Tìm tham số thực m để phương trình log2 (5 − 1) log4 (2.5 − 2) = m có nghiệm thực x≥1 A m ≤ B m > C m < D m ≥ x x Câu 15 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D Câu 16 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = −ey − C xy0 = ey − D xy0 = −ey + Câu 17 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B Vô nghiệm C D √ Câu 18 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 64 B 62 C Vô số D 63 Câu 19 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x B y0 = D y0 = A y0 = C y0 = 3 2x ln 10 x x ln 10 2x ln 10 Câu 21 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim un = a < lim = > với n lim = −∞ B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a , lim = ±∞ lim = !vn un D Nếu lim un = a > lim = lim = +∞ Câu 22 Tính lim n+3 A B C D un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D 2n − Câu 24 Tính lim 3n + n4 A B C D n−1 Câu 25 Tính lim n +2 A B C D Câu 26 Dãy số sau có giới hạn khác 0? n+1 A B n n 7n2 − 2n3 + Câu 27 Tính lim 3n + 2n2 + A B - 3 C sin n n C 1 D √ n D Trang 2/5 Mã đề Câu 28 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B cos n + sin n Câu 30 Tính lim n2 + A B C D ! C D C +∞ D −∞ Câu 31 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C D a 2 d = 30◦ , biết S BC tam giác Câu 32 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 3a Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a A B C D 3 [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ √ 2a 57 a 57 a 57 A a 57 B C D 19 17 19 Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 8a 2a 5a a A B C D 9 9 Câu 36 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B a C a D Câu 37 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A a B 2a C D Trang 3/5 Mã đề Câu 38 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a C A B a D a 0 0 Câu 39 [3] Cho hình lập phương ABCD.A B C D có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D √ Câu 40 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 A B C D 29 29 29 29 Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) B Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z C f (x)dx = f (x) f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 42 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B (I) (III) C (I) (II) D Cả ba mệnh đề Câu 43 Z Cho hàm số f (x),Zg(x) liên tụcZtrên R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? A Z C ( f (x) + g(x))dx = f (x)dx + g(x)dx Z k f (x)dx = f f (x)dx, k ∈ R, k , f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx Câu 44 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (I) sai B Câu (II) sai C Câu (III) sai D Khơng có câu sai Câu 45 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = x + C, C số A xα dx = α+1 Z Z C 0dx = C, C số D dx = ln |x| + C, C số x Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K Câu 47 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 48 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 49 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) khoảng (a; b) B Cả ba câu sai C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 50 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Chỉ có (I) C Chỉ có (II) D Cả hai câu - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C C C C B B A D 10 A 11 A 13 B 15 19 D 14 D 16 C D 17 12 18 B D 22 A 23 D 24 C B 28 29 B 30 31 D 34 35 A D 39 C D B 32 C 37 C 26 A 27 33 B 20 21 25 C D B 36 C 38 C 40 C 41 A D 42 C 44 D 45 A 46 D 47 A 48 43 49 B 50 C B D ... - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C C C C B B A D 10 A 11 A 13 B 15 19 D 14 D 16 C D 17 12 18 B D 22 A 23 D 24 C B 28 29 B 30 31 D 34... B Vô nghiệm C D Câu 16 [3 -122 17d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = ey + B xy0 = −ey − C xy0 = ey − D xy0 = −ey + Câu 17 [122 12d] Số nghiệm phương trình... 4; 3) log 2x Câu 20 [122 9d] Đạo hàm hàm số y = x2 − log 2x 1 − ln 2x − ln 2x B y0 = D y0 = A y0 = C y0 = 3 2x ln 10 x x ln 10 2x ln 10 Câu 21 Trong mệnh đề đây, mệnh đề sai? ! un A Nếu lim