Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [1] Tính lim 1 − n2 2n2 + 1 bằng? A − 1 2 B 1 3 C 1 2[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − n2 bằng? Câu [1] Tính lim 2n + 1 1 B C D A − Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x) + g(x)] = a + b B lim = x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x)g(x)] = ab x→+∞ x→+∞ √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 C − D A B 4 x−3 Câu [1] Tính lim bằng? x→3 x + A +∞ B C D −∞ 2−n Câu Giá trị giới hạn lim n+1 A B C D −1 2n − Câu Tính lim 2n + 3n + A B C −∞ D +∞ 2x + Câu Tính giới hạn lim x→+∞ x + 1 A B C −1 D 2 x−2 Câu Tính lim x→+∞ x + A B −3 C − D x2 − Câu Tính lim x→3 x − A B C −3 D +∞ x2 − 5x + Câu 10 Tính giới hạn lim x→2 x−2 A B −1 C D Câu 11 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m ≤ C m > D m < 4 4 − xy Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 − 19 11 − 18 11 − 29 11 + 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 64 C 62 D 63 Trang 1/5 Mã đề Câu 14 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C = 3m − có nghiệm D log 2x Câu 15 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x A y0 = B y0 = C y0 = x x ln 10 2x3 ln 10 Câu 16 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B Vô nghiệm C D y0 = 2x3 ln 10 D Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≥ B m < C m ≤ D m > Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C ≤ m ≤ D < m ≤ log(mx) Câu 19 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m ≤ C m < ∨ m = D m < ∨ m > Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 2020 C log2 13 D 13 Câu 21 Dãy số sau có giới hạn khác 0? n+1 B A √ n n C sin n n D n Câu 22 Trong mệnh đề đây, mệnh đề ! sai? un A Nếu lim un = a > lim = lim = +∞ ! un B Nếu lim un = a < lim = > với n lim = −∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = D Nếu lim un = a , lim = ±∞ lim Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 24 Phát biểu sau sai? A lim k = với k > n C lim √ = n C B lim qn = với |q| > D lim un = c (Với un = c số) Câu 25 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B −∞ D C +∞ un D Trang 2/5 Mã đề Câu 26 Tính lim A Câu 27 Tính lim A n+3 B 7n2 − 2n3 + 3n3 + 2n2 + B - Câu 28 Dãy số sau có giới hạn 0? n2 + n + n2 − B u = A un = n 5n − 3n2 (n + 1)2 ! 1 Câu 29 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B cos n + sin n Câu 30 Tính lim n2 + A B −∞ C D C D C un = − 2n 5n + n2 D un = C D C +∞ D n2 − 3n n2 Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab A √ B D √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a B C a D 0 0 Câu 33.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D 2 d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 abc b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a A a B C D 2a Câu 37 [3] Cho khối chóp S ABC có đáy tam giác vng B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) 2a 8a a 5a A B C D 9 9 Trang 3/5 Mã đề 3a , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a a 2a B C D A 3 √ Câu 39 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 3a 58 B C D A 29 29 29 29 Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B 2a C a D Câu 41 Mệnh đề sau sai? A F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) Câu 38 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z f (x)dx = f (x) D Câu 42 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C D u(x) Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai C Câu (II) sai D Câu (I) sai sai Câu 44 Trong khẳng định sau, khẳng định sai? A Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Cả ba đáp án Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trang 4/5 Mã đề Trong hai khẳng định A Chỉ có (I) B Cả hai sai C Cả hai D Chỉ có (II) Câu 46 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 47 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C B dx = ln |x| + C, C số x Z D xα dx = xα+1 + C, C số α+1 0dx = C, C số Câu 48 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K D B f (x) có giá trị nhỏ K D f (x) xác định K Câu 50 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III) D (II) (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B B D A D A B 10 B 11 B 12 B 13 15 14 A C 16 B 18 17 A 19 21 B C D B 24 B 26 B 28 29 A D 32 33 D 34 A 35 A 36 40 41 A 42 43 A 44 45 49 D C 38 A B 39 A 47 C 30 A 31 37 C 22 A 25 27 B 20 C 23 C 46 D B 48 A C 50 A C D C D ... (III) - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A C B B D A D A B 10 B 11 B 12 B 13 15 14 A C 16 B 18 17 A 19 21 B C D B 24 B 26 B 28 29... F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (II) B Cả ba mệnh đề C (I) (III) D (II)... B y0 = C y0 = x x ln 10 2x3 ln 10 Câu 16 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B Vô nghiệm C D y0 = 2x3 ln 10 D Câu 17 [122 5d] Tìm tham số thực m để phương trình log2