Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→a x→b x→b C lim− f (x) = f (a) lim+ f (x) = f (b) D lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→a x→b x→b x −1 Câu Tính lim x→1 x − A +∞ B 4x + Câu [1] Tính lim bằng? x→−∞ x + A B −1 Câu Giá trị lim (3x2 − 2x + 1) x→1 A +∞ B 1−n bằng? Câu [1] Tính lim 2n + 1 B A x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B Câu Giá trị lim(2x − 3x + 1) x→1 A B C D −∞ C −4 D C D C D − C −1 D C +∞ D Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A f (x) có giới hạn hữu hạn x → a B lim f (x) = f (a) x→a C lim+ f (x) = lim− f (x) = +∞ D lim+ f (x) = lim− f (x) = a x→a x→a x→a x→a Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a = B lim [ f (x) + g(x)] = a + b A lim x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x)g(x)] = ab x→+∞ x→+∞ Câu 10 Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm Câu 11 [12213d] Có giá trị nguyên m để phương trình nhất? A B 3|x−1| C D Câu 12 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B Vô nghiệm C x = 3m − có nghiệm x x D Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B 13 C log2 2020 D log2 13 Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 15 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m ≤ B m < C m ≥ D m > √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập ! " đây? 5 A (1; 2) B 2; ;3 D [3; 4) C 2 log(mx) = có nghiệm thực log(x + 1) C m ≤ D m < ∨ m = Câu 17 [1226d] Tìm tham số thực m để phương trình A m < ∨ m > B m < Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey + Câu 18 [3-12217d] Cho hàm số y = ln A xy0 = −ey − Câu 19 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m > C m ≤ D m ≥ A m < 4 4 − xy Câu 20 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x√+ y √ √ √ 11 + 19 18 11 − 29 11 − 11 − 19 B Pmin = C Pmin = D Pmin = A Pmin = 9 21 Câu 21 Tính lim n+3 A B C D ! 1 Câu 22 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C D +∞ 2 Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B C D un A B −∞ C D +∞ ! 3n + 2 Câu 25 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ Câu 27 Dãy số sau có giới hạn khác 0? 1 B A √ n n Câu 28 Tính lim A cos n + sin n n2 + B +∞ 12 + 22 + · · · + n2 n3 B C n+1 n D sin n n C D −∞ D +∞ Câu 29 [3-1133d] Tính lim A Câu 30 Tính lim A n−1 n2 + B C C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 32 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ 2a a a B a C D A 2 [ = 60◦ , S O Câu 33 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ √ Khoảng cách từ A đến (S√BC) √ 2a 57 a 57 a 57 C D A a 57 B 17 19 19 Câu 34 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B A a C D 2a 2 Câu 35 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C 2a D [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S√BC) √ a 57 a 57 2a 57 A B C D a 57 19 17 19 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B C D a A 0 0 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ thẳng BD √ √ √ a b2 + c2 c a2 + b2 b a2 + c2 abc b2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 41 Z Trong khẳng định sau, khẳng định sai? Z dx = ln |x| + C, C số B 0dx = C, C số A Z x Z xα+1 α C dx = x + C, C số D x dx = + C, C số α+1 Câu 42 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B Cả ba câu sai C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (III) sai B Câu (I) sai C Câu (II) sai D Khơng có câu sai Câu 44 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Cả hai câu sai C Chỉ có (I) D Chỉ có (II) Câu 45 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Trang 4/5 Mã đề Câu 46 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z B k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z C [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Z D f (x)dx = f (x) + C, với f (x) có đạo hàm R A Z Câu 47 đề sai? Z Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z A k f (x)dx = f f (x)dx, k ∈ R, k , B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z Z C f (x)g(x)dx = f (x)dx g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (II) (III) B Cả ba mệnh đề C (I) (II) D (I) (III) Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D F(x) = − cos x nguyên hàm hàm số f (x) = sin x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B C C D D B A 10 B 11 A 12 13 14 D 15 C D 17 C D 16 C 18 C 19 C 20 21 C 22 A 23 C 24 C 26 C 25 D 27 29 B 30 D 31 35 28 A C 33 34 B B 36 A C 38 39 A B 40 A 41 D 42 43 D 44 A 45 C 32 A C 37 D B 46 47 C 48 49 C 50 A D B C ... sin x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B A B C C D D B A 10 B 11 A 12 13 14 D 15 C D 17 C D 16 C 18 C 19 C 20 21 C 22 A 23 C 24... un = a, lim = +∞ lim Câu 26 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un B Nếu lim un = a , lim = ±∞ lim = Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim =... đoạn Trong hai khẳng định A Cả hai B Chỉ có (II) C Chỉ có (I) D Cả hai sai Trang 4/5 Mã đề Câu 46 đề sau Z [123 3d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục