Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→3 x2 − 9 x − 3 A +∞ B 6 C 3 D −3 Câu 2 Tính[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Tính lim A +∞ x→3 x2 − x−3 B √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A − 2n − Câu Tính lim 2n + 3n + A −∞ B +∞ x+2 bằng? Câu Tính lim x→2 x A B 2n + Câu Tìm giới hạn lim n+1 A B 2n + Câu Tính giới hạn lim 3n + 2 A B 4x + Câu [1] Tính lim bằng? x→−∞ x + A −4 B x+1 Câu Tính lim x→−∞ 6x − 1 A B Câu !Dãy số sau có giới !hạn 0? n n A B − e x+1 x→+∞ 4x + B C D −3 D C D C D C D C C C −1 C D D D !n C !n D C D Câu 10 Tính lim A Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = −ey − D xy0 = −ey + Câu 11 [3-12217d] Cho hàm số y = ln A xy0 = ey − 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ 11 + 19 18 11 − 29 C Pmin = D Pmin = 21 Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − 19 A Pmin = B Pmin √ 11 − = Câu 13 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C D Vô nghiệm Trang 1/5 Mã đề Câu 14 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 2] q x+ log23 x + 1+4m−1 = D m ∈ [0; 4] Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 4) D (2; 4; 3) Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 Câu 17 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 18 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ Câu 19 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − log 2x − ln 2x − ln 2x A y0 = C y0 = D y0 = B y0 = 3 x 2x ln 10 x ln 10 2x3 ln 10 Câu 21 Tính lim A 2n2 − 3n6 + n4 B Câu 22 Dãy số sau có giới hạn 0? − 2n n2 − 3n A un = B u = n 5n + n2 n2 C C un = D n2 − 5n − 3n2 D un = n2 + n + (n + 1)2 + + ··· + n Mệnh đề sau đúng? n2 + A lim un = B lim un = C Dãy số un khơng có giới hạn n → +∞ D lim un = un Câu 24 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B C −∞ D Câu 23 [3-1132d] Cho dãy số (un ) với un = Câu 25 Trong mệnh đề đây, mệnh đề sai? A Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un = B Nếu lim un = a , lim = ±∞ lim ! un C Nếu lim un = a < lim = > với n lim = −∞ ! un D Nếu lim un = a > lim = lim = +∞ Trang 2/5 Mã đề ! 1 Câu 26 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C n−1 Câu 27 Tính lim n +2 A B C ! 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B C 2 7n2 − 2n3 + Câu 29 Tính lim 3n + 2n2 + B - C A 3 D D D +∞ D ! 3n + 2 Câu 30 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ Khoảng cách từ O đến (S BC) √ với mặt đáy S O = a √ √ a 57 2a 57 a 57 A B C a 57 D 19 17 19 Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C √ D A √ a + b2 a2 + b2 a2 + b2 a2 + b2 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a B C D A Câu 34 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B C a D a 3 Câu 35 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD b a2 + c2 abc b2 + c2 c a2 + b2 a b2 + c2 B √ C √ D √ A √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a a 38 3a 38 A B C D 29 29 29 29 Trang 3/5 Mã đề Câu 38 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C D a A 2a 2 3a , hình chiếu vng Câu 39 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a 2a a a A B C D 3 0 0 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab B √ C D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) !0 Z B f (x)dx = f (x) C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) D Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C Câu 42 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 43 khẳng định sau, khẳng định sai? Z Trong u0 (x) A dx = log |u(x)| + C u(x) B F(x) = − cos x nguyên hàm hàm số f (x) = sin x C F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 44 Z Các khẳng định sau Z sai? A Z C Z !0 f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = f (x) Z Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = F(x) + C ⇒ f (t)dt = F(t) + C Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) khoảng (a; b) D Cả ba câu sai Câu 46 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Trang 4/5 Mã đề Z B Nếu Z C Nếu Z D Nếu f (x)dx = Z f (x)dx = Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z g(x)dx f (x) = g(x), ∀x ∈ R g(x)dx f (x) , g(x), ∀x ∈ R Câu 47 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III) Câu 48 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (II) B Cả hai C Cả hai sai D Chỉ có (I) Câu 49 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Khơng có câu B Câu (III) sai sai Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị nhỏ K C f (x) xác định K C Câu (I) sai D Câu (II) sai B f (x) có giá trị lớn K D f (x) liên tục K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 A B C C B B B C 10 A 11 A 12 C 13 C B 14 A 15 B 16 A 17 B 18 C 20 C 19 D 21 A 22 A 23 D 24 25 D 26 27 D 28 29 B D C 30 A 31 33 B D 32 B B 34 A 35 A 36 B 37 A 38 B 39 B 41 40 A C 42 43 A B 44 A 45 B 46 47 B 48 A 50 49 A D D ...Câu 14 [122 16d] Tìm tất giá trị thực tham số m để phương trình log23 √ i h có nghiệm thuộc đoạn 1; A m ∈ [−1; 0] B m ∈ [0; 1] C m ∈ [0; 2] q x+ log23 x + 1+4m−1 = D m ∈ [0; 4] Câu 15 [122 7d] Tìm... 4; 6) C (2; 4; 4) D (2; 4; 3) Câu 16 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≤ B m ≥ C m < D m > 4 4 Câu 17 [122 19d-2mh202050] Có số nguyên x cho... (x + y) = log4 (x2 + y2 )? A Vô số B C D Câu 18 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C < m ≤ D ≤ m ≤ Câu 19 [122 18d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2