Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị giới hạn lim x→−1 (x2 − x + 7) bằng? A 7 B 9 C[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A Câu Tính lim x→+∞ B C D B −3 C − D C D x−2 x+3 A Câu Giá trị lim (3x2 − 2x + 1) A +∞ x→1 B Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm 2n − + 3n + A B +∞ √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 B A − Câu Tính lim 2n2 C D −∞ C D Câu Phát biểu sau sai? A lim = B lim qn = (|q| > 1) n C lim k = D lim un = c (un = c số) n 2n + Câu Tính giới hạn lim 3n + C D A B 2 2−n Câu Giá trị giới hạn lim n+1 A B C D −1 2n + Câu 10 Tìm giới hạn lim n+1 A B C D Câu 11 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e − B xy = e − C xy0 = ey + D xy0 = −ey + 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y √ √ √ 18 11 − 29 11 + 19 11 − = C Pmin = D Pmin = 21 Câu 12 [12210d] Xét số thực dương x, y thỏa mãn log3 Pmin P = x√+ y 11 − 19 A Pmin = B Pmin Trang 1/5 Mã đề √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 63 D 64 Câu 14 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 15 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị " nhỏ! biểu thức P = x + 2y thuộc tập " đây? ! 5 A 2; B [3; 4) C ;3 D (1; 2) 2 √ ab log(mx) = có nghiệm thực log(x + 1) C m < ∨ m = D m < ∨ m > Câu 17 [1226d] Tìm tham số thực m để phương trình A m ≤ B m < Câu 18 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m ≤ D m > 4 4 Câu 19 [12219d-2mh202050] Có số nguyên x cho tồn số thực y thỏa mãn log3 (x + y) = log4 (x2 + y2 )? A B C D Vô số Câu 20 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (2; 4; 6) B (2; 4; 4) C (1; 3; 2) D (2; 4; 3) + + ··· + n Mệnh đề sau đúng? Câu 21 [3-1132d] Cho dãy số (un ) với un = n2 + A Dãy số un khơng có giới hạn n → +∞ B lim un = C lim un = D lim un = ! 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D ! 3n + 2 Câu 23 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 24 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = !vn un B Nếu lim un = a > lim = lim = +∞ C Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un D Nếu lim un = a < lim = > với n lim = −∞ ! 1 Câu 25 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n Trang 2/5 Mã đề 12 + 22 + · · · + n2 Câu 26 [3-1133d] Tính lim n3 A B 3 A B C C +∞ Câu 27 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B 7n − 2n3 + Câu 28 Tính lim 3n + 2n2 + A B - 3 cos n + sin n Câu 29 Tính lim n2 + A +∞ B n−1 Câu 30 Tính lim n +2 A B C −∞ D +∞ D un D C D C D −∞ C D Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a B C D A a 6 3a Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ a a 2a a B C D A 3 0 0 Câu 33.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D [ = 60◦ , S O Câu 34 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ a 57 2a 57 a 57 B a 57 C D A 17 19 19 d = 120◦ Câu 35 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C 2a D √ Câu 36 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a a 38 3a 58 3a 38 A B C D 29 29 29 29 d = 30◦ , biết S BC tam giác Câu 37 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab C √ D √ A B √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 39 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A 2a B C a D a Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B C √ D √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C Câu 42 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z D !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu B Chỉ có (II) C Chỉ có (I) D Cả hai câu sai Câu 44 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai B Chỉ có (I) C Chỉ có (II) D Cả hai sai Câu 45 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C Cả ba câu sai D F(x) = G(x) khoảng (a; b) Trang 4/5 Mã đề Câu 46 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) + g(x)]dx = A f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Câu 47 Cho hai hàm y = f (x), y = g(x) Z có đạo hàm Z R Phát biểu sau đúng? A Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (II) (III) Câu 49 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) liên tục K C Cả ba mệnh đề D (I) (II) B f (x) có giá trị nhỏ K D f (x) xác định K Câu 50 Trong khẳng định sau, khẳng định sai? A F(x) = − cos x nguyên hàm hàm số f (x) = sin x B Z F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x u0 (x) dx = log |u(x)| + C C u(x) D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 A B C A A A B D B 10 B 11 B 12 13 B 14 15 B 16 C C 17 C 18 19 C 20 A 21 23 D B 24 D B 26 A B 29 31 B 22 25 A 27 D 28 C B B 30 D 32 D 33 D 34 D 35 D 36 D 37 C 38 D 39 C 40 D 41 C 42 C 43 A 44 C 45 A 46 C 47 C 48 49 C 50 D C ... − có nghiệm A ≤ m ≤ B < m ≤ C < m ≤ D ≤ m ≤ Câu 15 [122 12d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C D Vô nghiệm Câu 16 [122 20d-2mh202047] Xét số thực dương a, b, x, y thỏa... Câu 17 [122 6d] Tìm tham số thực m để phương trình A m ≤ B m < Câu 18 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m ≥ B m < C m ≤ D m > 4 4 Câu 19 [122 19d-2mh202050]... Câu 13 [122 8d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vơ số B 62 C 63 D 64 Câu 14 [122 14d]