Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = n[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 x+1 Câu Tính lim x→−∞ 6x − 1 A B √ √ 4n2 + − n + Câu Tính lim 2n − A B !n C un = !n −2 D un = C D C +∞ D x+2 bằng? x B C x3 − Câu Tính lim x→1 x − A −∞ B C 2n + Câu Tính giới hạn lim 3n + C A B 2 Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Tính lim x→2 A D D +∞ D Câu Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D x − 5x + Câu Tính giới hạn lim x→2 x−2 A B C D −1 1−n Câu 10 [1] Tính lim bằng? 2n + 1 1 A B − C D 2 2 Câu 11 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 x−3 x−2 x−3 x−2 Câu 12 [12212d] Số nghiệm phương trình − 2.2 − 3.3 + = A B C D Vô nghiệm √ Câu 13 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B 63 C 64 D Vô số Trang 1/5 Mã đề Câu 14 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Câu 15 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ √ Câu 16 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " nhỏ! biểu thức P" = x!+ 2y thuộc tập đây? 5 B ;3 C (1; 2) D [3; 4) A 2; 2 √ √ Câu 17 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B ≤ m ≤ C m ≥ D < m ≤ A ≤ m ≤ 4 Câu 18 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = −e + B xy = −e − C xy0 = ey + D xy0 = ey − 2 Câu 19 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A B C Vô nghiệm D q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log23 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 1] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [−1; 0] Câu 21 Dãy số sau có giới hạn 0? n2 − 3n n2 − A un = B u = n n2 5n − 3n2 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B n−1 Câu 23 Tính lim n +2 A B C un = n2 + n + (n + 1)2 D un = − 2n 5n + n2 ! C D C D ! 3n + 2 Câu 24 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 25 Tính lim n+3 A B C D 2 2 + + ··· + n Câu 26 [3-1133d] Tính lim n3 A B C +∞ D 3 Câu 27 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = ! un B Nếu lim un = a < lim = > với n lim = −∞ Trang 2/5 Mã đề ! un C Nếu lim un = a > lim = lim = +∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 28 [3-1132d] Cho dãy số (un ) với un = + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un giới hạn n → +∞ A lim un = 1 C lim un = D lim un = Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 30 Dãy số sau có giới hạn khác 0? sin n A B n n C C √ n D D n+1 n Câu 31 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a B a C D A Câu 32 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 √ Câu 33 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 58 3a 38 3a a 38 B C D A 29 29 29 29 0 0 Câu 34.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 35 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a a 2a A B a C D d = 30◦ , biết S BC tam giác Câu 36 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 16 13 26 Câu 37 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng S B AD √ √ √ a a A B a C D a 3 Trang 3/5 Mã đề d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A B 3a C 4a D 2a Câu 39 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C 2a D A a [ = 60◦ , S O Câu 40 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ Khoảng cách từ O đến (S BC) √ với mặt đáy S O = a √ 2a 57 a 57 a 57 D B C a 57 A 19 17 19 Câu 41 Z Cho hàm sốZf (x), g(x) liên tục R Trong cácZmệnh đề sau, mệnh Z đề nàoZsai? k f (x)dx = f A Z C f (x)dx, k ∈ R, k , Z Z ( f (x) − g(x))dx = f (x)dx − g(x)dx f (x)g(x)dx = B Z D f (x)dx g(x)dx Z Z ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai Câu 43 Hàm số f có nguyên hàm K A f (x) xác định K C f (x) có giá trị nhỏ K B f (x) có giá trị lớn K D f (x) liên tục K D Chỉ có (I) Câu 44 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 45 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Trang 4/5 Mã đề Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C F(x) = G(x) khoảng (a; b) D G(x) = F(x) − C khoảng (a; b), với C số Câu 47 Trong khẳng định sau, khẳng định sai? A F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x B Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Z u0 (x) dx = log |u(x)| + C C u(x) D F(x) = − cos x nguyên hàm hàm số f (x) = sin x Câu 48 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II) D (II) (III) Câu 49 Z Trong khẳng định sau, khẳng định sai? Z dx = x + C, C số A Z C xα dx = dx = ln |x| + C, C số Z x D 0dx = C, C số B xα+1 + C, C số α+1 Câu 50 Trong khẳng định sau, khẳng định sai?√ A F(x) = x nguyên hàm hàm số f (x) = x B Cả ba đáp án C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số D F(x) = x2 nguyên hàm hàm số f (x) = 2x - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D A B B A D 10 11 D 12 A 13 A B 17 A 19 B 21 D B 16 B 18 D 20 D 22 D B 24 25 B 26 A 27 C 28 29 C 30 31 C 32 B C C D C 34 A 35 C 36 37 C 38 A 39 41 B 14 23 33 C 15 D B D 40 A 42 B 43 C D B 44 A 46 45 A 47 C 48 49 C 50 A D C ... −e + B xy = −e − C xy0 = ey + D xy0 = ey − 2 Câu 19 [122 11d] Số nghiệm phương trình 12. 3 x + 3.15 x − x = 20 A B C Vô nghiệm D q Câu 20 [122 16d] Tìm tất giá trị thực tham số m để phương trình... C (1; 2) D [3; 4) A 2; 2 √ √ Câu 17 [122 15d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 B ≤ m ≤ C m ≥ D < m ≤ A ≤ m ≤ 4 Câu 18 [3 -122 17d] Cho hàm số y = ln Trong khẳng... 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Câu 15 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B < m ≤ C ≤ m ≤ D ≤ m ≤ √ Câu 16 [122 20d-2mh202047] Xét số thực dương a, b, x, y