1. Trang chủ
  2. » Tất cả

Ôn toán thptqg lớp 12 (42)

6 2 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 116,05 KB

Nội dung

Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số y = f (x) liên tục trên khoảng (a, b) Điều[.]

Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim+ f (x) = f (b) B lim+ f (x) = f (a) lim− f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim+ f (x) = f (b) Câu Tính lim x→1 A −∞ x3 − x−1 B +∞ x→a x→b x→a x→b D lim− f (x) = f (a) lim− f (x) = f (b) C D C D Câu Giá trị lim(2x2 − 3x + 1) A +∞ x→1 B x+1 Câu Tính lim x→−∞ 6x − 1 A B C D √ x2 + 3x + Câu Tính giới hạn lim x→−∞ 4x − 1 A B C − D 4 Câu Cho hàm số f (x) xác định khoảng K chưa a Hàm số f (x) liên tục a A lim+ f (x) = lim− f (x) = +∞ B lim+ f (x) = lim− f (x) = a x→a x→a C lim f (x) = f (a) x→a √ √ 4n2 + − n + Câu Tính lim 2n − 3 A B Câu Dãy số có giới hạn 0? n3 − 3n A un = B un = n2 − 4n n+1 4x + Câu [1] Tính lim bằng? x→−∞ x + A B x→a x→a D f (x) có giới hạn hữu hạn x → a C +∞ D !n −2 C un = !n D un = C −4 D −1 Câu 10 Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ A lim [ f (x)g(x)] = ab B lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ f (x) a C lim = D lim [ f (x) − g(x)] = a − b x→+∞ g(x) x→+∞ b Câu 11 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e + B xy = −e − C xy0 = −ey + D xy0 = ey − Câu 12 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = Giá trị nhỏ biểu thức P" = x!+ 2y thuộc tập đây? " ! 5 A (1; 2) B ;3 C [3; 4) D 2; 2 √ ab Trang 1/5 Mã đề 1 Câu 13 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ 1 − xy Câu 14 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 19 11 − A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu 15 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 √ √ Câu 16 [12215d] Tìm m để phương trình x+ 1−x − 4.2 x+ 1−x − 3m + = có nghiệm 3 A ≤ m ≤ B m ≥ C ≤ m ≤ D < m ≤ 4 x x x Câu 17 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B C Vô nghiệm D 2 Câu 18 [12213d] Có giá trị nguyên m để phương trình nhất? A B C √ 3|x−1| = 3m − có nghiệm D Câu 19 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A 62 B Vô số C 63 D 64 q Câu 20 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 2] C m ∈ [0; 1] D m ∈ [−1; 0] ! 1 + ··· + Câu 21 [3-1131d] Tính lim + 1+2 + + ··· + n A B +∞ C D 2 ! 1 Câu 22 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B C D un Câu 23 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A −∞ B C +∞ D n−1 Câu 24 Tính lim n +2 A B C D Câu 25 Tính lim n+3 A B C D Câu 26 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < Trang 2/5 Mã đề (III) lim qn = +∞ |q| > A B Câu 27 Dãy số sau có giới hạn khác 0? 1 A √ B n n C C D n+1 n D sin n n Câu 28 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = B Nếu lim un = +∞ lim = a > lim(un ) = +∞ ! un C Nếu lim un = a > lim = lim = +∞ ! un = −∞ D Nếu lim un = a < lim = > với n lim Câu 29 Dãy số sau có giới hạn 0? n2 − 3n − 2n A un = B un = n 5n + n2 Câu 30 Tính lim A cos n + sin n n2 + B +∞ C un = C −∞ n2 + n + (n + 1)2 D un = n2 − 5n − 3n2 D [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a.√Khoảng cách từ A đến (S √ BC) √ a 57 2a 57 a 57 A B C D a 57 19 19 17 Câu 32 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B 2a C a D A a Câu 33 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A√đến mặt phẳng (BCD) √ √ √ a a B C a D A 2a 2 √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 a 38 3a 58 3a B C D A 29 29 29 29 [ = 60◦ , S O Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ với mặt đáy S O = a √ Khoảng cách từ O đến (S BC) √ √ 2a 57 a 57 a 57 A B C a 57 D 19 17 19 0 0 Câu 36.√ [2] Cho hình lâp phương √ √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC a a a a A B C D Trang 3/5 Mã đề Câu 37 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a B D A a C a d = 120◦ Câu 38 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 3a B 4a C D 2a d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vuông √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 26 16 13 Câu 40 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab 1 ab B D √ A √ C √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 41 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ [a; b], ta có F (x) = f (x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ (a; b), ta có F (x) = f (x), ngồi F (a+ ) = f (a) F (b− ) = f (b) D Với x ∈ (a; b), ta có f (x) = F(x) Câu 42 Z Trong cácα+1khẳng định sau, khẳng định sai? Z x + C, C số B dx = ln |x| + C, C số A xα dx = α+1 Z Z x C dx = x + C, C số D 0dx = C, C số Câu 43 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x √ C F(x) = x nguyên hàm hàm số f (x) = x D Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số Câu 44 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z D f (x)dx = f (x) f (x)dx = F(x) + C Câu 45 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A (I) (III) B (I) (II) C Cả ba mệnh đề D (II) (III) Trang 4/5 Mã đề Câu 46 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) xác định K D f (x) liên tục K Câu 47 đề sau sai? Z [1233d-2] Mệnh Z A k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z B f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z C [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R Câu 48 Cho Z hai hàm yZ = f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z B Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z C Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R Câu 49 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 50 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Chỉ có (II) C Cả hai D Cả hai sai - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 B C B C C A C A 10 C C 11 D 12 13 C 14 15 C 16 17 18 B D C B 20 19 A D 21 23 B 22 A 24 B 25 A 27 D C B 26 C 28 C 29 B 30 A 31 B 32 A 33 B 34 C 36 C 38 C 40 C 35 37 D B D 39 41 C 42 A 43 C 44 45 B 47 A 49 D 46 D 48 D 50 B B ... x Câu 17 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20 A B C Vô nghiệm D 2 Câu 18 [122 13d] Có giá trị nguyên m để phương trình nhất? A B C √ 3|x−1| = 3m − có nghiệm D Câu 19 [122 8d] Cho... C Pmin = D Pmin = 21 9 Câu 15 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m < B m ≥ C m ≤ D m > 4 4 √ √ Câu 16 [122 15d] Tìm m để phương trình x+ 1−x...1 Câu 13 [122 14d] Với giá trị m phương trình |x−2| = m − có nghiệm A ≤ m ≤ B ≤ m ≤ C < m ≤ D < m ≤ 1 − xy Câu 14 [122 10d] Xét số thực dương x, y thỏa mãn log3

Ngày đăng: 10/03/2023, 21:01

w