Tài liệu Free pdf LATEX (Đề thi có 5 trang) BÀI TẬP ÔN TẬP MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Dãy số nào có giới hạn bằng 0? A un = n2 − 4n B un = n[.]
Tài liệu Free pdf LATEX BÀI TẬP ÔN TẬP MÔN TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi Câu Dãy số có giới hạn 0? n3 − 3n A un = n2 − 4n B un = n+1 x−3 bằng? x→3 x + A −∞ B x3 − Câu Tính lim x→1 x − A B +∞ x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A −1 B !n −2 C un = !n D un = C D +∞ C −∞ D C D Câu [1] Tính lim Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim [ f (x)g(x)] = ab B lim = x→+∞ x→+∞ g(x) b C lim [ f (x) − g(x)] = a − b D lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ Câu Cho hàm số y = f (x) liên tục khoảng (a, b) Điều kiện cần đủ để hàm số liên tục đoạn [a, b] là? A lim− f (x) = f (a) lim− f (x) = f (b) B lim+ f (x) = f (a) lim+ f (x) = f (b) x→a x→b x→a x→b C lim+ f (x) = f (a) lim− f (x) = f (b) 2n + Câu Tính giới hạn lim 3n + A B x2 − 12x + 35 Câu Tính lim x→5 25 − 5x A −∞ B − Câu !Dãy số sau có giới !n hạn 0? n A B 3 x→a x→b x→a x→b D lim− f (x) = f (a) lim+ f (x) = f (b) D C +∞ D !n C e !n D − C Câu 10 Giá trị giới hạn lim (x2 − x + 7) bằng? x→−1 A B C D log(mx) Câu 11 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < ∨ m > B m < ∨ m = C m ≤ D m < q Câu 12 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [−1; 0] B m ∈ [0; 4] C m ∈ [0; 2] D m ∈ [0; 1] √ Câu 13 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị nhỏ biểu thức P = x + 2y thuộc tập đây? Trang 1/5 Mã đề " A [3; 4) ! B 2; " ! C ;3 D (1; 2) Câu 14 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m < C m > D m ≥ A m ≤ 4 4 x x x Câu 15 [12211d] Số nghiệm phương trình 12.3 + 3.15 − = 20 A B Vô nghiệm C D 1 Trong khẳng định sau đây, khẳng định đúng? x + B xy0 = ey − C xy0 = −ey − D xy0 = −ey + Câu 16 [3-12217d] Cho hàm số y = ln A xy0 = ey + Câu 17 [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 18 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b B C D A 2 − xy Câu 19 [12210d] Xét số thực dương x, y thỏa mãn log3 = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 + 19 11 − 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 − ln 2x − ln 2x 1 − log 2x B y0 = C y0 = D y0 = A y0 = 3 x 2x ln 10 x ln 10 2x ln 10 ! 3n + 2 Câu 21 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D n−1 Câu 22 Tính lim n +2 A B C D 12 + 22 + · · · + n2 Câu 23 [3-1133d] Tính lim n3 A B +∞ C D 3 7n2 − 2n3 + Câu 24 Tính lim 3n + 2n2 + A B C D - 3 2n2 − Câu 25 Tính lim 3n + n4 A B C D cos n + sin n Câu 26 Tính lim n2 + A −∞ B C +∞ D Trang 2/5 Mã đề 1 1 Câu 27 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A +∞ B C Câu 28 Dãy số sau có giới hạn khác 0? n+1 sin n A B C √ n n n ! D D n Câu 29 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A Câu 30 Tính lim B 1 + + ··· + 1.2 2.3 n(n + 1) C D ! B C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 A Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a A B 2a C a D √ Câu 34 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vuông góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 58 a 38 3a A B C D 29 29 29 29 Câu 35 [2] Cho chóp S ABCD có đáy hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B D a A 2a C a Câu 36 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S√B a a a A B C D a 3a Câu 37 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) Trang 3/5 Mã đề √ a a a 2a A B C D 3 Câu 38 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng S B AD √ √ √ √ a a A a C a B D d = 30◦ , biết S BC tam giác Câu 39 [3] Cho hình chóp S ABC có đáy tam giác vng A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai√đường thẳng BD S C √ √ √ a a a A B C D a 6 Câu 41 Hàm số f có nguyên hàm K A f (x) liên tục K B f (x) có giá trị nhỏ K C f (x) có giá trị lớn K D f (x) xác định K Câu 42 đề sau Z [1233d-2] Mệnh Z Z sai? [ f (x) − g(x)]dx = A Z B [ f (x) + g(x)]dx = g(x)dx, với f (x), g(x) liên tục R f (x)dx − Z f (x)dx + Z g(x)dx, với f (x), g(x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z D k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R C Câu 43 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (I) B Cả hai câu C Chỉ có (II) D Cả hai câu sai Câu 44 Cho hai hàm số f (x), g(x) hai hàm số liên tục có nguyên hàm F(x), G(x) Xét mệnh đề sau (I) F(x) + G(x) nguyên hàm f (x) + g(x) (II) kF(x) nguyên hàm k f (x) (III) F(x)G(x) nguyên hàm hàm số f (x)g(x) Các mệnh đề A Cả ba mệnh đề B (I) (III) C (I) (II) D (II) (III) Câu 45 Hàm số F(x) gọi nguyên hàm hàm số f (x) đoạn [a; b] A Với x ∈ (a; b), ta có f (x) = F(x) B Với x ∈ [a; b], ta có F (x) = f (x) C Với x ∈ [a; b], ta có F (x) = f (x) D Với x ∈ (a; b), ta có F (x) = f (x), F (a+ ) = f (a) F (b− ) = f (b) Trang 4/5 Mã đề Câu 46 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B G(x) = F(x) − C khoảng (a; b), với C số C F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số D F(x) = G(x) khoảng (a; b) Câu 47 f (x), g(x) liên Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z đề sai? A f (x)g(x)dx = f (x)dx g(x)dx B k f (x)dx = f f (x)dx, k ∈ R, k , Z Z Z Z Z Z C ( f (x) − g(x))dx = f (x)dx − g(x)dx D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có nguyên hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai Câu 49 Z Các khẳng định sau Z sai? A Z C C Câu (I) sai Z D Khơng có câu sai f (x)dx = F(x) +C ⇒ f (u)dx = F(u) +C B f (x)dx = F(x) + C ⇒ !0 Z Z k f (x)dx = k f (x)dx, k số D f (x)dx = f (x) Z f (t)dt = F(t) + C Câu 50 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? A Nếu f (x)dx = g0 (x)dx f (x) = g(x), ∀x ∈ R Z Z B Nếu f (x)dx = g(x)dx f (x) , g(x), ∀x ∈ R Z Z C Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx Z Z D Nếu f (x)dx = g(x)dx f (x) = g(x), ∀x ∈ R - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC Mà ĐỀ Mã đề thi 1 D C A B C D B 10 A 11 B 12 A 13 B D 14 A C 15 D 16 17 D 18 A B 19 C 20 21 C 22 D 24 D 23 A 25 27 D 26 B 29 C B 28 A C 30 B 32 31 A D 33 D 34 35 D 36 37 D 38 B 39 A 40 B 41 A 42 43 45 B D D 44 B D 46 C B 47 A 48 D 49 A 50 D ... D (1; 2) Câu 14 [122 4d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 B m < C m > D m ≥ A m ≤ 4 4 x x x Câu 15 [122 11d] Số nghiệm phương trình 12. 3 + 3.15 − = 20... Câu 16 [3 -122 17d] Cho hàm số y = ln A xy0 = ey + Câu 17 [122 5d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực x≥1 A m < B m > C m ≤ D m ≥ Câu 18 [122 18d]... giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 13 16 26 Câu 40 [2] Cho hình chóp S ABCD có đáy hình vuông cạnh