Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 Giá trị của lim x→1 (2x2 − 3x + 1) là A 2 B +∞ C 1 D 0 Câu 2 [1] Tính lim 1 − 2n 3n + 1 bằng? A 2 3 B 1 3 C[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi Câu Giá trị lim(2x2 − 3x + 1) x→1 B +∞ − 2n Câu [1] Tính lim bằng? 3n + 1 B A 3 2−n Câu Giá trị giới hạn lim n+1 A B A C D C − D C D −1 Câu Cho f (x) = sin2 x − cos2 x − x Khi f (x) A −1 + sin 2x B −1 + sin x cos x C − sin 2x D + sin 2x Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục điểm B Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ A lim [ f (x) + g(x)] = a + b x→+∞ x→+∞ C lim [ f (x) − g(x)] = a − b x→+∞ B lim [ f (x)g(x)] = ab x→+∞ f (x) a D lim = x→+∞ g(x) b √ x2 + 3x + x→−∞ 4x − B Câu Tính giới hạn lim A Câu Tính lim x→5 A +∞ C D − C D − x2 − 12x + 35 25 − 5x B −∞ Câu Phát biểu sau sai? A lim k = n C lim = n x2 − Câu 10 Tính lim x→3 x − A +∞ B B lim un = c (un = c số) D lim qn = (|q| > 1) C D −3 √ Câu 11 [1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị ngun dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m ≤ B m < ∨ m = C m < D m < ∨ m > Trang 1/5 Mã đề 1 Trong khẳng định sau đây, khẳng định đúng? x+1 y B xy = e + C xy0 = ey − D xy0 = −ey − Câu 13 [3-12217d] Cho hàm số y = ln A xy0 = −ey + Câu 14 [12218d] Cho a > 0, b > thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = Giá trị a + 2b A B C D 2 Câu 15 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Câu 16 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≤ C m < D m ≥ 4 4 Câu 17 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ Câu 18 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D q Câu 19 [12216d] Tìm tất giá trị thực tham số m để phương trình log3 x+ log23 x + 1+4m−1 = √ i h có nghiệm thuộc đoạn 1; 3 A m ∈ [0; 4] B m ∈ [0; 1] C m ∈ [−1; 0] D m ∈ [0; 2] Câu 20 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A 2020 B log2 13 C 13 D log2 2020 n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ B Nếu lim un = a > lim = lim ! un C Nếu lim un = a < lim = > với n lim = −∞ D Nếu lim un = +∞ lim = a > lim(un ) = +∞ Câu 23 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = Câu 24 Phát biểu sau sai? A lim √ = n C lim un = c (Với un = c số) + + ··· + n Mệnh đề sau đúng? n2 + 1 B lim un = D Dãy số un khơng có giới hạn n → +∞ B lim qn = với |q| > D lim = với k > nk ! 1 + + ··· + 1+2 + + ··· + n B +∞ C Câu 25 [3-1131d] Tính lim A D Trang 2/5 Mã đề ! 3n + 2 Câu 26 Gọi S tập hợp tham số nguyên a thỏa mãn lim + a − 4a = Tổng phần tử n+2 S A B C D Câu 27 Tính lim n+3 A B C D cos n + sin n Câu 28 Tính lim n2 + A B +∞ C D −∞ 7n − 2n + Câu 29 Tính lim 3n + 2n2 + A B C D - 3 2n − Câu 30 Tính lim 3n + n4 A B C D Câu 31 [2] Cho hai mặt phẳng (P) (Q) vng góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD √ √ = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ a a C 2a D A B a Câu 32 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab ab 1 A √ B C √ D √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 33 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C)√và (A0C D) √ √ √ a 2a a B C a D A d = 30◦ , biết S BC tam giác Câu 34 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 13 16 26 3a Câu 35 [3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a, S D = , hình chiếu vng góc S mặt phẳng (ABCD) trung điểm cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) √ 2a a a a A B C D 3 [ = 60◦ , S O Câu 36 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S √ BC) √ √ a 57 a 57 2a 57 A a 57 B C D 17 19 19 Câu 37 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a A B C a D 2 Trang 3/5 Mã đề Câu 38 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC ab ab B √ C A √ D √ a +b a2 + b2 a2 + b2 a2 + b2 d = 120◦ Câu 39 [2] Cho hình chóp S ABC có S A = 3a S A ⊥ (ABC) Biết AB = BC = 2a ABC Khoảng cách từ A đến mặt phẳng (S BC) 3a A 2a B C 4a D 3a Câu 40 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a B a C 2a D a A Câu 41 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 42 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 43 Trong khẳng định sau, khẳng định sai? A Cả ba đáp án B F(x) = x2 nguyên hàm hàm số f (x) = 2x C Nếu F(x), G(x) hai nguyên hàm hàm số f (x) F(x) − G(x) số √ D F(x) = x nguyên hàm hàm số f (x) = x Câu 44 đề sau Z [1233d-2] Mệnh Z Z sai? A Z B [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z f (x)dx = f (x) + C, với f (x) có đạo hàm R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R C Câu 45 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) có giá trị nhỏ K B f (x) liên tục K D f (x) xác định K Câu 46 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C Trang 4/5 Mã đề C Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) Câu 47 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A Cả ba câu sai B F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số C G(x) = F(x) − C khoảng (a; b), với C số D F(x) = G(x) khoảng (a; b) Câu 48 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai ngun hàm D hàm số sai khác hàm số A Câu (I) sai B Khơng có câu C Câu (III) sai sai D Câu (II) sai Câu 49 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Cả hai câu sai B Cả hai câu C Chỉ có (I) D Chỉ có (II) Câu 50 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D D A C D A D D 10 B 12 B 11 B 15 16 B 17 D 14 C 13 C D B 18 A 19 C 20 B 21 C 22 B 24 B 23 B D 25 27 A 28 A 29 D 30 31 D 32 A 33 B 37 C B 41 C 43 45 49 36 D 38 D 40 D 42 A D 44 B D 46 B 47 C 34 A 35 A 39 D 26 48 C 50 B B D ... trị nhỏ [a; b] A B C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D D A C D A D D 10 B 12 B 11 B 15 16 B 17 D 14 C 13 C D B 18 A 19 C 20... liên tục K D f (x) xác định K Câu 46 Mệnh đề sau sai? Z A Nếu F(x) nguyên hàm f (x) (a; b) C số !0 Z B f (x)dx = f (x) f (x)dx = F(x) + C Trang 4/5 Mã đề C Mọi hàm số liên tục (a; b) có nguyên... (2020−21−x ) A 2020 B log2 13 C 13 D log2 2020 n−1 Câu 21 Tính lim n +2 A B C D Câu 22 Trong mệnh đề đây, mệnh đề nào!sai? un A Nếu lim un = a , lim = ±∞ lim = v! n un = +∞ B Nếu lim un = a > lim = lim