1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đề thi Olympic Tây Hồ năm 2012 môn Toán lớp 10 doc

1 377 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 116,15 KB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO HÀ NỘI CỤM TRƯỜNG THPT BA ĐÌNH – TÂY HỒ ĐỀ THI OLYMPIC NĂM HỌC 2011-2012 MÔN TOÁN- LỚP 10 Thời gian làm bài:150 phút, không kể thời gian giao đề. Đề thi gồm 01 trang. Bài 1 (5 điểm) 1. Giải hệ phương trình: 2 2 5 3          x xy y x y xy . 2. Giải bất phương trình: 2 2 5 3 1. x x x     Bài 2 (5 điểm) Cho bất phương trình:   2 2 2 2 2 3 0      m x x x x , ( m là tham số). 1. Giải bất phương trình với 1. m  2. Tìm m để mọi   0;2 x đều là nghiệm của bất phương trình đã cho. Bài 3 (5 điểm) 1. Cho tam giác ABC có độ dài các cạnh 4 , 6 , AB cm AC cm   góc 0 60 . BAC Tính độ dài đường phân giác trong kẻ từ A của tam giác . ABC 2. Trong mặt phẳng tọa độ Oxy cho hình chữ nhật . ABCD Viết phương trình các đường thẳng , , , AB BC CD DA , biết 2  AD AB và các đường thẳng , , , AB BC CD DA lần lượt đi qua các điểm   1;1 , M   2;0 , N     1;2 , 3; 1 . P Q    Bài 4 (5 điểm) 1. Giải phương trình: 2 3 6 4 4 . x x x x     2. Cho các số dương , , a b c thoả mãn 3 . ab bc ca abc    Tìm giá trị nhỏ nhất của biểu thức:   2 2 2 2 2 2 2 2 2 2 . a b b c c a abc M a b c     HÕT ĐỀ CHÍNH THỨC . HÀ NỘI CỤM TRƯỜNG THPT BA ĐÌNH – TÂY HỒ ĐỀ THI OLYMPIC NĂM HỌC 2011 -2012 MÔN TOÁN- LỚP 10 Thời gian làm bài:150 phút, không kể thời gian giao đề. Đề thi gồm 01 trang. Bài 1 (5. x x x , ( m là tham số). 1. Giải bất phương trình với 1. m  2. Tìm m để mọi   0;2 x đều là nghiệm của bất phương trình đã cho. Bài 3 (5 điểm) 1. Cho tam giác ABC có độ dài các cạnh. trị nhỏ nhất của biểu thức:   2 2 2 2 2 2 2 2 2 2 . a b b c c a abc M a b c     HÕT ĐỀ CHÍNH THỨC

Ngày đăng: 03/04/2014, 00:20

TỪ KHÓA LIÊN QUAN

w