1. Trang chủ
  2. » Tất cả

Luận án tiến sĩ hiệu ứng âm – điện – từ trong các hệ bán dẫn một chiều

123 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN VĂN NGHĨA HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG CÁC HỆ BÁN DẪN MỘT CHIỀU LUẬN ÁN TIẾN SĨ VẬT LÍ HÀ NỘI-2016 z ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN VĂN NGHĨA HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG CÁC HỆ BÁN DẪN MỘT CHIỀU Chuyên ngành: Vật lí lí thuyết vật lí tốn Mã số: 62.44.01.03 LUẬN ÁN TIẾN SĨ VẬT LÍ NGƯỜI HƯỚNG DẪN KHOA HỌC PGS TS NGUYỄN VŨ NHÂN GS TS NGUYỄN QUANG BÁU HÀ NỘI-2016 z LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng Các kết quả, số liệu, đồ thị… nêu luận án trung thực chưa cơng bố cơng trình khác Hà Nội, tháng 04 năm 2016 Tác giả luận án Nguyễn Văn Nghĩa i z LỜI CẢM ƠN Tôi xin bày tỏ lòng biết ơn sâu sắc đến GS.TS Nguyễn Quang Báu PGS.TS Nguyễn Vũ Nhân, người thầy hết lịng giúp đỡ tơi q trình học tập, nghiên cứu hồn thành luận án Tôi xin chân thành cảm ơn giúp đỡ thầy cô giáo Bộ môn Vật lý lý thuyết, khoa Vật lý Phòng Sau đại học, trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội Tôi xin chân thành cảm ơn giúp đỡ, động viên thầy cô, đồng nghiệp Bộ môn Vật lý, Khoa Năng Lượng, Trường Đại học Thủy Lợi Tôi xin gửi lời cảm ơn đến Quỹ phát triển khoa học công nghệ Quốc gia (NAFOSTED, Mã số 103.01-2015.22) Trường Đại học Thủy Lợi tài trợ cho việc nghiên cứu tham gia trình bày báo cáo Hội nghị nước quốc tế Xin chân thành cảm ơn gia đình, bạn bè đồng nghiệp giúp đỡ tơi suốt q trình học tập, nghiên cứu Hà Nội, tháng 04 năm 2016 Tác giả luận án Nguyễn Văn Nghĩa ii z MỤC LỤC Lời cam đoan i Lời cảm ơn ii Mục lục iii Danh mục bảng v Danh mục hình vẽ đồ thị vi MỞ ĐẦU Chương HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG BÁN DẪN KHỐI VÀ HÀM SÓNG, PHỔ NĂNG LƯỢNG CỦA DÂY LƯỢNG TỬ 1.1 Hiệu ứng âm - điện - từ bán dẫn khối 1.1.1 Phương trình động lượng tử cho điện tử bán dẫn khối 1.1.2 Biểu thức trường âm - điện - từ bán dẫn khối 1.2 Hàm sóng phổ lượng điện tử dây lượng tử 13 1.2.1 Hàm sóng phổ lượng điện tử dây lượng tử hình trụ với hố cao vô hạn 15 1.2.2 Hàm sóng phổ lượng điện tử dây lượng tử hình chữ nhật với hố cao vô hạn 16 1.2.3 Hàm sóng phổ lượng điện tử dây lượng tử hình trụ với hố parabol 17 Chương HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG DÂY LƯỢNG TỬ HÌNH TRỤ VỚI HỐ THẾ CAO VÔ HẠN 19 2.1 Dòng âm – điện dây lượng tử hình trụ với hố cao vô hạn 20 2.2 Trường âm - điện – từ dây lượng tử hình trụ với hố cao vơ hạn 23 2.3 Kết tính số bàn luận cho dòng âm – điện trường âm – điện – từ dây lượng tử hình trụ với hố cao vơ hạn 31 2.4 Kết luận chương 39 Chương HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG DÂY LƯỢNG TỬ HÌNH CHỮ NHẬT VỚI HỐ THẾ CAO VÔ HẠN 40 3.1 Dòng âm – điện dây lượng tử hình chữ nhật với hố cao vô hạn 41 iii z 3.2 Trường âm - điện – từ dây lượng tử hình chữ nhật với hố cao vô hạn 45 3.3 Ảnh hưởng sóng điện từ lên dịng âm - điện dây lượng tử hình chữ nhật với hố cao vô hạn 53 3.4 Kết tính số bàn luận cho dịng âm – điện trường âm – điện – từ dây lượng tử hình chữ nhật với hố cao vơ hạn 57 3.5 Kết luận chương 65 Chương HIỆU ỨNG ÂM - ĐIỆN - TỪ TRONG DÂY LƯỢNG TỬ HÌNH TRỤ VỚI HỐ THẾ PARABOL 68 4.1 Hamiltonian phương trình động lượng tử cho điện tử dây lượng tử hình trụ với hố parabol 68 4.2 Biểu thức trường âm - điện – từ dây lượng tử hình trụ với hố parabol 72 4.3 Kết tính số bàn luận cho trường âm – điện – từ dây lượng tử hình trụ với hố parabol 78 4.4 Kết luận chương 83 KẾT LUẬN 85 Các cơng trình liên quan đến luận án công bố 87 Tài liệu tham khảo 89 Phụ lục 97 iv z DANH MỤC CÁC BẢNG Stt Trang Bảng 2.1 Các tham số dây lượng tử hình trụ với hố cao vô hạn GaAs/GaAsAl Bảng 3.1 32 Các tham số dây lượng tử hình chữ nhật với hố cao vô hạn GaAs/GaAsAl Bảng 4.1 57 Các tham số dây lượng tử hình trụ với hố parabol GaAs/GaAsAl 78 v z DANH MỤC CÁC HÌNH VẼ VÀ ĐỒ THỊ Trang Stt Hình 1.1 Hình 1.2 Hình 2.1 Hình 2.2 Hình 2.3 Sơ đồ hiệu ứng âm – điện – từ Minh họa hình dạng mật độ trạng thái bán dẫn khối, giếng lượng tử, dây lượng tử chấm lượng tử Sự phụ thuộc dòng âm-điện vào nhiệt độ T hệ ứng với giá trị khác số sóng âm q = 2,0.108 m-1, q = 3,1.108 m-1 q = 4,2.108 m-1 Sự phụ thuộc dịng âm – điện vào bán kính dây lượng tử T=290 K (đường nét chấm), T=295 K (đường nét gạch), T=300 K (đường liền nét) Ở  q  1 1011 s 1 Sự phụ thuộc dòng âm – điện vào bán kính dây lượng tử tần số sóng âm  q  11011 s 1 (đường nét 14 32 32 34 chấm),  q   1011 s 1 (đường nét gạch),  q   1011 s 1 (đường liền nét) Ở T=295 K  F  0.048 eV 10 11 12 Hình 2.4 Hình 2.5 Hình 2.6 Hình 2.7 Hình 2.8 Hình 2.9 Hình 2.10 Sự phụ thuộc dịng âm-điện vào bán kính dây lượng tử ứng với giá trị số sóng âm q =1,2.108 m-1, q = 2,2.108 m-1, q = 3,1.108 m-1 q = 4,2.108 m-1 Sự phụ thuộc dòng âm – điện vào nhiệt độ lượng Fermi  F Ở  q   1011 s 1 Sự phụ thuộc dòng âm - điện vào bán kính dây lượng tử nhiệt độ hệ Sự phụ thuộc trường âm-điện-từ vào nhiệt độ từ trường B =0,10T (đường nét đứt), B =0,12T (đường liền nét) Ở R =30,0×10−9m Sự phụ thuộc trường âm-điện-từ vào nhiệt độ bán kính R = 35,0×10−9m (đường nét đứt), R =30,0×10−9m (đường liền nét) Ở B =2,0T Sự phụ thuộc trường âm - điện – từ vào nhiệt độ T từ trường B =2,0T (đường nét đứt), B =2,2T (đường liền nét) Ở R =30,0×10−9m Sự phụ thuộc trường âm–điện–từ dây lượng tử hình trụ với hố cao vơ hạn vào tần số sóng âm vi z 34 35 35 36 36 37 37 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Hình 2.11 Hình 3.1 Hình 3.2 Hình 3.3 Hình 3.4 Hình 3.5 Hình 3.6 Hình 3.7 Hình 3.8 Hình 3.9 Hình 3.10 Hình 3.11 Hình 3.12 Hình 4.1 ngồi với nhiệt độ T= 4K Sự phụ thuộc trường âm – điện – từ vào từ trường vùng từ trường mạnh nhiệt độ T = 4,8K (đường nét đứt), T=5,0K (đường nét liền) với R=30×10−9m Sự phụ thuộc dịng âm - điện vào nhiệt độ T hệ ứng với q=2,5.10-7(m-1); q=3,4.10-7(m-1); q=4,0.10-7 (m-1) Sự phụ thuộc dòng âm - điện vào chiều dài dây lượng tử ứng với T = 220K, T = 250K T = 270K Sự phụ thuộc dịng âm - điện vào kích thước (Lx, Ly) dây lượng tử Sự phụ thuộc dịng âm – điện vào tần số sóng âm nhiệt độ hệ T = 200K, T=250K T =300K Sự phụ thuộc dòng âm–điện vào tần số sóng âm chiều dài dây lượng tử L=60nm, L =65 nm L = 73 nm Sự phụ thuộc trường âm - điện - từ vào tần số sóng âm ngồi từ trường thay đổi Sự phụ thuộc trường âm - điện - từ vào nhiệt độ hệ từ trường thay đổi Sự phụ thuộc trường âm - điện - từ vào độ lớn từ trường với nhiệt độ hệ T=200K T=250K Sự phụ thuộc trường âm - điện - từ vào độ lớn từ trường với nhiệt độ hệ T=4,0K T=5,0K Sự phụ thuộc trường âm - điện- từ vào độ lớn từ trường với tần số sóng âm ngồi thay đổi Sự phụ thuộc dịng âm – điện vào tần số sóng âm ngồi với chiều dài dây lượng tử hình chữ nhật L = 60nm, L = 65 nm L = 80nm nhiệt độ T = 130K có sóng điện từ ngồi Sự phụ thuộc dịng âm – điện vào chiều dài dây lượng tử với nhiệt độ T = 100K, T = 130K T = 200K có sóng điện từ ngồi tần số Ω =5×1014s−1 Sự phụ thuộc trường âm - điện - từ dây hình trụ với hố parabol vào tần số sóng âm ngồi với giá trị từ trường Bx = 1,3T, Bx = 1,6T Bx = 1,8T Ở R=30,0x10-9 m T=4K vii z 37 58 58 58 59 59 61 61 62 62 63 64 64 79 27 28 29 30 Hình 4.2 Hình 4.3 Hình 4.4 Hình 4.5 Sự phụ thuộc trường âm - điện - từ dây lượng tử hình trụ với hố parabol vào từ trường Bx vùng từ trường yếu Ở R=30,0x10-9 m, By=0,10T (đường nét đứt) By=0,15T (đường liền nét) Sự phụ thuộc trường âm - điện - từ dây lượng tử hình trụ với hố parabol vào từ trường By vùng từ trường yếu Ở R=30,0x10-9 m, Bx=0,20T (đường nét đứt) Bx=0,25T (đường liền nét) Sự phụ thuộc trường âm - điện - từ dây lượng tử hình trụ với hố parabol vào từ trường Bx vùng từ trường mạnh Ở R=30,0x10-9 m, By=1,52T (đường nét đứt) By=1,70T (đường liền nét) Sự phụ thuộc trường âm - điện - từ dây lượng tử hình trụ với hố parabol vào từ trường By vùng từ trường mạnh Ở R=30,0x10-9 m, Bx=2,30T (đường nét đứt) Bx=2,40T (đường liền nét) viii z 80 80 81 81 -m*omegaq); xi2=(h^2*beta/(2*m)).*((h*(bb(i1,1).^2bb(i2,1).^2)./(2*r.^2))+m*omegaq); ham11=(hs(i1,j1).^2).*exp((-beta.*(h*bb(i1,j1)).^2)./(2*m*r.^2)); ham121=(xi1.^3).*exp(-xi1).*(((2*m*xi1./((h^2)*beta)).^3) *besselK(3,xi1)+3*besselK(2,xi1)+3*besselK(1,xi1) +besselK(0,xi1)); ham122=(xi2.^3).*exp(-xi2).*(((2*m*xi2./((h^2)*beta)).^3) *besselK(3,xi2)+3*besselK(2,xi2)+3*besselK(1,xi2) +besselK(0,xi2)); tong1=tong1+ham11.*(ham121+ham122); ti1=xi1+(h^3)*beta*omegak./2; ti2=xi2-(h^3)*beta*omegak./2; ham21=((2*exp(-kl*L)./(L*r.^2).^2).^2) *exp((-beta*(h*bb(i1,j1)).^2)./(2*m*r.^2)); ham211=(ti1.^(5/2)).*exp(-ti1).*(besselK(5/2,ti1) +3*besselK(3/2,ti1)+3*besselK(1/2,ti1)+besselK(-1/2,ti1)); ham222=(ti2.^(5/2)).*exp(-ti2).*(besselK(5/2,ti2) +3*besselK(3/2,ti2)+3*besselK(1/2,ti2)+besselK(-1/2,ti2)); tong2=tong2+ham21.*(ham211+ham222); end end end end h= (ham10.*tong1+ham20.*tong2); Chương trình Matlab tính tốn trường âm - điện – từ dây lượng tử hình trụ với hố cao vô hạn 2.1 Sự phụ thuộc trường âm - điện – từ vào tần số sóng âm ngoài, từ trường tham số dây lượng tử hình trụ với hố cao vơ hạn clear all; close all;clc; T=linspace(2,150,300); r=10*10^-9; phi=90*pi/180; B1=4.5; y1=hamamdientu(r,phi,T,B1); B3=5.15; y3=hamamdientu(r,phi,T,B3); figure(1); plot(T,y1,'r',T,y3,'b'); hold on; legend('B=2.5 T','B=3.0 T'); 99 z xlabel('Temperature T (K)'); ylabel('The QAME field (arb units)'); % Ve theo nhiet voi B khac T=linspace(10,300,100); r=10*10^-9; phi=90*pi/180; B1=0.160; B2=0.18; B3=0.19; y1=hamamdientu(r,phi,T,B1); y3=hamamdientu(r,phi,T,B3); figure(2); plot(T,y1,'r',T,y3,'y'); hold on; legend('B=0.14 T','B=0.18 T'); xlabel('Temperature T (K)'); ylabel('The QAME field (arb units)'); % Ve theo tan so song am ngoai wq=linspace(0.05*10^10,4*10^10,100); B=5; B1=6; B2=10; r=40*10^-9; phi=60*pi/180; T0=40; T1=4; y21=hamamdientu1(r,phi,T0,B,wq); y22=hamamdientu1(r,phi,T1,B1,wq); y23=hamamdientu1(r,phi,T1,B2,wq); figure(2); plot(wq,y21,'r',wq,y22,'b',wq,y23,'c'); xlabel('The frequency of external acoustic wave w_q (m^-^1)'); ylabel('The AME field (arb units)'); legend('B=1.3 T','B=1.5 T','B=1.8 T'); 2.2 Hàm tính trường âm – điện – từ dây lượng tử hình trụ hố cao vơ hạn function y=hamamdientu(r,phi,T,B) e0=1.6*10^-19; e=2.07*e0; nm=2; n1m=2; N=1000; H=B/(4*pi*10^-7); wq=2*10^10; wk=9*10^9; kb=1.38*10^(-23); L=15*10^-8; S=pi*(r.^2); phiw = 10^4; kapa = 13.5*e0; vs=5000; m0=9.1*10^(-31);m=0.067*m0; beta=1./(kb*T); ro=5320; hh=1.0544*10^(-34); q=wq./800; c=3*10^8; cr=800; cl=2000; ct=1800; sima1=(1-cr./cl).^(1/2); sima2=(1-cr./ct).^(1/2); kl=(q.^2-wq.^2./cl.^2).^(1/2); tau = 10^-12; ac=sqrt(c*hh./(e*B)); F=q.*((1+sima1.^2)./(2.*sima1)+(sima1./sima2-2).*(1+sima2.^2)./(2.*sima2)); xi=(r.^2)./(2*ac.^2); omegac=e*H./(m*c); cs1=e*pi*(kapa^2)*beta.*T./(8*(pi^2)*ro*vs*wk*L*S*phiw*(hh^4)); cs2=2*e*pi*(kapa^2)*vs*((2*pi*hh)^3)*(wq.^2)./(ro*F*S); hams1=0; hams2=0; xx=1./(omegac*tau); kx=kb*T.*xx; x=xx; r(1)=r(end); bb=[2.4048 3.8317; 3.8316 0]; hs=[24*bessel(3,q.*r(1))./((q.*r(1)).^3) 48*bessel(4,q.*r(1))./((q.*r(1)).^3); 48.1*bessel(4,q.*r(1))./((q.*r(1)).^3) 0]; B1=hamci(x).^2-hamsi(x).^2; B11=B1.*sin(x).*cos(x); 100 z B2=hamci(x).^2+hamsi(x).^2; B3=hamci(x).*hamsi(x).*(sin(x).^2-cos(x).^2); B4=hamci(x).*cos(x)+hamsi(x).*sin(x); B5=hamci(x).*sin(x)-hamsi(x).*cos(x); B6=(hamci(x).*cos(x)).^2+(hamsi(x).*sin(x)).^2; for i1=1:nm for j1=1:n1m for i2=1:nm for j2=1:n1m hsa=hh*omegac*(i1+j1/2+1/2+abs(j1)/2); deltaNN=omegac*((i1-i2)+(j1-j2)/2+(abs(j1)-abs(j2))/2); hami=(hs(i1,j1)); hs1=(sqrt(2*m*(deltaNN-hh*wk+hsa)-(kb*T*x))-sqrt((kb*T*x) -2*m*hsa)).^3; hs2=(sqrt(2*m*(deltaNN+hh*wk+hsa)-(kb*T*x))+sqrt((kb*T*x) -2*m*hsa)).^3; hs3=(sqrt((kb*T*x)+2*m*(deltaNN+hh*wk-hsa))-sqrt((kb*T*x) -2*m*hsa)).^3; hs4=(sqrt((kb*T*x)+2*m*(deltaNN-hh*wk-hsa))-sqrt((kb*T*x) -2*m*hsa)).^3; hams1=hams1+(hami.^2).*(((kb*T*x)-2*m*hsa).^(3/2)) *(hs1+hs2-hs3-hs4); hamU=(2*exp(-kl*L)./(2*pi*L)).*(N^2*(giaithua(i1+j1)/giaithua(i1))) *(exp(-xi).*xi.^j1); hs21=q.^2-2*m*(deltaNN+hh*wk-hh*wq); hs22=q.^2-2*m*(deltaNN-hh*wk+hh*wq); hams2=hams2+q.*(hamU.^2).*(((kb*T*x)-2*m*hsa).^(3/2)) *(hs21-hs22); ts11=(kx.*sin(phi).*(1-cos(phi).^2)+hsa.*(cos(phi).^2 -sin(phi).^2)).*(B11+B3)-(kx-hsa.*sin(phi)).*(sin(phi).^2) *(B4.^2)-kx.*(1+sin(phi).^2).*(B5.^2); ts1=hams1.*ts11; ts2=hams2.*ts11; ms1=(kx.^2).*(B4.^2.*(1+sin(phi).^2)+B1.*sin(phi).^2 -2*(sin(phi).^2).*cos(phi).*(B11+B3)); 101 z ms2=2*kx.*hsa.*((B11+B3).*(2*(sin(phi).^2)-1) -2*(sin(phi).^2).*cos(phi).*B6); ms3=((hsa.*sin(phi)).^2).*(B2-2*cos(phi).*(B11+B3)-2*B4.^2); ms=ms1+ms2+ms3+hsa.*B4.^2; end end end end amdt=(phiw*hh./(4*m*(e*kx).^2)).*((ts1.*cs1+ts2.*cs2)./ms); y= real(amdt); Chương trình Matlab tính tốn dịng âm - điện dây lượng tử hình chữ nhật với hố cao vơ hạn 3.1 Sự phụ thuộc dịng âm - điện vào tần số sóng âm ngồi tham số dây lượng tử hình chữ nhật với hố cao vô hạn close all; clear all; clc; q=linspace(1.8*10^6,18.0*10^6,100); n1=1; n2=2; k1=2; k2=1; L=90*10^-9; T1=150; y1= (ham(n1,n2,k1,k2,q,T1,L)); T2=170; y2= (ham(n1,n2,k1,k2,q,T2,L)); T3=200; y3= (ham(n1,n2,k1,k2,q,T3,L)); figure(2); plot(q,y1,'r',q,y2,'b',q,y3,'c'); xlabel('Acoustic wave number q (m^-^1)'); ylabel('Acoustoelectric current (arb.units)'); T=linspace(30,300,100); q12=1.2*10^7; y12= (ham(n1,n2,k1,k2,q12,T,L)); q22=3.2*10^7; y22= (ham(n1,n2,k1,k2,q22,T,L)); q32=5.0*10^7; y32= (ham(n1,n2,k1,k2,q32,T,L)); figure(1); plot(T,y12,'r',T,y22,'b',T,y32,'c'); legend('q=1.2*10^7 m^-^1','q=3.2*10^7 m^-^1','q=5.0*10^7 m^-^1'); xlabel('Temperature T (K)'); ylabel('Acoustoelectric current (arb.units)'); % Ve theo chieu dai day L=linspace(30*10^-9,100*10^-9,100); n1=2; n2=1; k1=2; k2=1; q=3*10^7; T1=200; y31=ham(n1,n2,k1,k2,q,T1,L); 102 z T2=220; y32=ham(n1,n2,k1,k2,q,T2,L); T3=270; y33=ham(n1,n2,k1,k2,q,T3,L); figure(3); plot(L,y31,'r',L,y32,'b',L,y33,'c'); xlabel('The length of the wire L (m)'); ylabel('Acoustoelectric current (arb.units)'); clear all; b=linspace(20*10^-9,70*10^-9,100); n1=2; n2=1; k1=2; k2=1; L=90*10^-9; q=3*10^7; T1=100; y41=ham1a(n1,n2,k1,k2,q,T1,L,b); T2=130; y42=ham1a(n1,n2,k1,k2,q,T2,L,b); T3=150; y43=ham1a(n1,n2,k1,k2,q,T3,L,b); plot(b,y41,'r',b,y42,'b',b,y43,'c');legend('T=100K','T=150K','T=200K'); xlabel('Width of the wire L_x (m)'); ylabel('Acoustoelectric current (mA)'); clear all; omegaq=linspace(0.1*10^9,24*10^9,100); L=90*10^-8; q=1.3*10^6; T=[200 250 300]; c=['r' 'b' 'c' 'y'] for i=1:length(T); y= (hamomegaq(q,T(i),L,omegaq)); figure(3); plot(omegaq,y,c(i)); hold on; grid on; end xlabel('Acoustic wave number w_q (s^-^1)'); ylabel('Acoustoelectric current (arb units)'); legend('T=200K','T=250K','T=300K'); clear all; omegaq=linspace(0.1*10^9,4*10^10,100); L=[60*10^-8 65*10^-8 73*10^-8]; T=100; q=1.3*10^6; c=['r' 'b' 'c' 'y'] for i=1:length(L) y= (hamomegaq(q,T,L(i),omegaq)); figure(4); plot(omegaq,y,c(i)); hold on; end xlabel('Acoustic wave number w_q (s^-^1)'); ylabel('Acoustoelectric current (arb units)'); 103 z grid on; legend('L=60nm','L=65nm','L=73nm'); 3.2 Hàm tính dịng âm – điện dây lượng tử hình chữ nhật hố cao vơ hạn function h=ham(n1,n2,k1,k2,q,T,L) qx=10*10^6; qy=10*10^6; z0=L; b=40*10^-9; a=70*10^-9; omegaq =1.46*10^9; omegak=0.46*10^9; e=1.6*10^(-19); kb=1.38*10^(-23); h=6.625*10^(-34)/(2*pi); cl=2*10^3; m=0.067*9.1*10^(-31); ham2=0; for i1=0:length(n1) for i2=0:length(n2) for i3=0:length(k1) for i4=0:length(k2) deta=((h*pi)^2/(2*m))*(((n1/a)^2)+((k1/b)^2)-((n2/a)^2)-((k2/b)^2)); tong1=exp(-((h*pi)^2)./(2*m*kb*T))*(((n1/a)^2)+((n2/b)^2)); % ham thu nhat xi1=(h./(2*kb*T))*(deta-omegaq); xi2=(h./(2*kb*T))*(deta+omegaq); tu1=32*(pi^4)*((qx.*a*n1*n2).^2).*(1-(-1)^(n1+n2)*cos(qx*a)); mau1=((((qx*a).^4)-2*pi.*((qx*a).^2)*(n1^2+n2^2)+(pi^4) *(n1^2-n2^2)^2).^2); tong11=(tu1./mau1).^2; tu2=32*(pi^4)*((qy*b*k1*k2).^2).*(1-(-1)^(k1+k2)*cos(qy*b)); mau2=((((qy*b).^4)-2*pi.*((qy*b).^2)*(k1^2+k2^2)+(pi^4) *(k1^2-k2^2)^2).^2); tong12=(tu2./mau2).^2; tong13=exp(-xi1).*(xi1.*besselK(0,xi1)+3*((2*kb*T/h).^2) *(xi1.^3).*(besselK(1,xi1)+besselK(2,xi1))+8*((2*kb*T/h).^5) *(xi1.^6).*besselK(3,xi1)); tong14=exp(-xi2).*(xi2.*besselK(0,xi2)+3*((2*kb*T/h).^2) *(xi2.^3).*(besselK(1,xi2)+besselK(2,xi2))+8*((2*kb*T/h).^5) *(xi2.^6).*besselK(3,xi2)); ham1=ham1+tong1.*tong11.*tong12.*(tong13+tong14); % ham thu hai txi1=xi1+(h./(2*kb*T))*omegak; txi2=xi2-(h./(2*kb*T))*omegak; 104 z tong21=exp(-2*z0*sqrt(q.^2+(omegaq/cl)^2)); tong22=exp(-txi1).*(txi1.^(5/2)).*(besselK(5/2,txi1) +3*(besselK(3/2,txi1)+besselK(1/2,txi1))+besselK(-1/2,txi1)); tong23=exp(-txi2).*(txi2.^(5/2)).*(besselK(5/2,txi2) +3*(besselK(3/2,txi2)+besselK(1/2,txi2))+besselK(-1/2,txi2)); ham2=ham2+tong1.*tong21.*(tong22-tong23); end end end end phi = 10^4; kapa = 13.5*e; tau = 10^-12; vs = 5370; ro = 2*10^6; esilonf=0.050*e; hs1=exp(esilonf./(kb*T)).*(4*e*kb*T*tau*((kapa*m)^2)/(((2*pi)^2) *omegaq*ro*vs*(h^2))); S=a*b; ct=18*10^2; simal=1-(vs/cl)^2; simat=1-(vs/ct)^2; f=q*((1+simal)/(2*simal)+((simal/simat)-2)*((1+simat^2)/(2*simat))); ts2=exp(esilonf./(kb*T)).*sqrt(2*m/h).*((2*kb*T/h).^(3/2)) *(8*e*pi*m*tau*phi*((kapa*omegaq)^2)*(cl^4)); ms2=ro*f*S*vs*(L.^2)*(h^0); hs2=ts2./ms2; h=(hs1.*ham1+hs2.*ham2); Chương trình Matlab tính tốn trường âm - điện – từ dây lượng tử hình chữ nhật với hố cao vơ hạn 4.1 Sự phụ thuộc trường âm - điện – từ vào tần số sóng âm ngồi, từ trường ngồi tham số dây lượng tử hình chữ nhật với hố cao vô hạn % Ve theo tan so song am ngoai wq=linspace(5*10^10,25*10^10,100); T=4; L=170*10^-9; Lx=45*10^-9; Ly=45*10^-9; B1=5.30; B2=5.55; B3=5.60; ym1=hamamdientuhcntq(L,phi,T,B1,wq,Lx,Ly); ym2=hamamdientuhcntq(L,phi,T,B2,wq,Lx,Ly); ym3=hamamdientuhcntq(L,phi,T,B3,wq,Lx,Ly); plot(wq,ym1,'r',wq,ym2,'b',wq,ym3,'c'); xlabel('The frequency of external acoustic wave w_q (s^-^1)'); ylabel('The AME field (arb units)'); legend('Bx=1.6 T','Bx=1.8 T','Bx=2.1 T'); % Ve theo nhiet T voi tu truong ngoai thay doi 105 z clear all; T=linspace(1,45,100); wq=0.8*10^10; phi=30*pi/180; L=300*10^-9; Lx=28*10^-9; Ly=28*10^-9; B1=2.298; B2=2.299; ym1=hamamdientuhcntq(L,phi,T,B1,wq,Lx,Ly); ym2=hamamdientuhcntq(L,phi,T,B2,wq,Lx,Ly); plot(T,ym1,'r',T,ym2,'c'); legend('B=2.30 T','B=2.28 T'); xlabel('Temperature T (K)'); ylabel('The AME field (arb units)'); % Ve theo tu truong B voi nhiet thay doi B=linspace(0.01,0.2,20); wq=9*10^11; L=150*10^-9; Ly=30*10^-9; Lx=Ly; T0=200; y1=hamamdientuhcntq(L,phi,T0,B,wq,Lx,Ly); T1=250; y2=hamamdientuhcntq(L,phi,T1,B,wq,Lx,Ly); plot(B,y1,'r',B,y2,'b'); legend('T=200 K','T=250 K'); xlabel('Magnetic B (T)'); ylabel('The AME field (arb units)'); B=linspace(0.7,4.0,100); wq=9*10^11; L=150*10^-9; Ly=30*10^-9; Lx=Ly; T0=4; y1=hamamdientuhcntq(L,phi,T0,B,wq,Lx,Ly); T1=5; y2=hamamdientuhcntq(L,phi,T1,B,wq,Lx,Ly); plot(B,y1,'r',B,y2,'b'); legend('T=4.0 K','T=5.0 K'); xlabel('Magnetic B (T)'); ylabel('The AME field (arb units)'); % Ve theo tu truong ngoai voi tan so song am ngoai thay doi clear all; B=linspace(0.85,3.7,100); wq1=2*10^11; wq2=3*10^11; L=250*10^-9; Ly=40*10^-9; Lx=40*10^-9; phi=6*pi/180; T0=4; y11=hamamdientuhcntq(L,phi,T0,B,wq1,Lx,Ly); T1=5; y12=hamamdientuhcntq(L,phi,T1,B,wq1,Lx,Ly); plot(B,y11,'r',B,y12,'b'); legend('wq=2.0*10^11 s^-1','wq=2.5*10^11 s^-1'); xlabel('Magnetic B (T)'); ylabel('The AME field (arb units)'); 4.2 Hàm tính trường âm – điện – từ dây lượng tử hình chữ nhật hố vô hạn function y=hamamdientuhcntq(L,phi,T,B,wq,Lx,Ly) e0=1.6*10^-19; e=2.07*e0; m0=9.1*10^(-31); m=0.067*m0; S=Lx*Ly; nm=2; n1m=2; N=3; N1=100; wk=9*10^9; kB=1.38*10^(-23); phiw = 10^4; kapa = 13.5*e0; vs=5000; beta=1./(kB*T); ro=5320; hh=1.0544*10^(-34); q=wq./800; c=3*10^8; cr=800; cl=2000;ct=1800; sima1=(1-cr./cl).^(1/2); sima2=(1-cr./ct).^(1/2); kl=(q.^2-wq.^2./cl.^2).^(1/2); tau = 10^-12; F=q.*((1+sima1.^2)./(2.*sima1)+(sima1./sima2-2).*(1+sima2.^2)./(2.*sima2)); ac=sqrt(c*hh./(e*B)); xi=(Lx.^2)./(2*ac.^2); omegac=e*B/(m*c*4*pi*10^-7); 106 z cs1=e*(kapa^2)*kB*T./(8*pi*ro*vs*wk*L*S*phiw*(hh^4)); cs2=e*(kapa^2)*((2*vs*pi*hh)^3)*wq*phi*(2*m)^(1/2)./(2*pi*ro*F*S); hams1=0; hams2=0; amdt=0; x=1./(omegac*tau); exi=kB*T*x; for i11=1:N for i12=1:N for i1=1:nm for j1=1:n1m for i2=1:nm for j2=1:n1m hsa=hh*omegac.*(i11+1/2)+((hh*pi)^2./(2*m)) *((i1./Lx).^2+(j1./Ly).^2); deltall=hh*omegac.*(i11-i12)+((hh*pi).^2/(2*m)) *((i1./Lx).^2-(i2./Lx).^2+(j1./Ly).^2-(j2./Ly).^2); tt1=(32*pi^4*(q.*Lx*i1*i2).^2).*(1-((-1)^(i1+i2)).*cos(q.*Lx)); tt2=(32*pi^4*(q.*Ly*j1*j2).^2).*(1-((-1)^(j1+j2)).*cos(q.*Ly)); mm1=(q.*Lx).^4-2*(pi^2)*((q.*Lx).^2)*(i1^2+i2^2) +(pi^4)*(i1^2-i2^2)^2; mm2=(q.*Ly).^4-2*(pi^2)*((q.*Ly).^2)*(j1^2+j2^2) +(pi^4)*(j1^2-j2^2)^2; hami=tt1.*tt2./((mm1.*mm2).^2); hs1=(sqrt(deltall-hh*wk+hsa-exi)+sqrt(exi-hsa)).^3; hs2=(sqrt(deltall+hh*wk+hsa-exi)+sqrt(exi-hsa)).^3; hs3=(sqrt(deltall+hh*wk-hsa+exi)-sqrt(exi-hsa)).^3; hs4=(sqrt(deltall-hh*wk-hsa+exi)-sqrt(exi-hsa)).^3; hams1=hams1+(hami.^2)*(hamJ.^2).*((exi-hsa).^(3/2)) *(hs1+hs2-hs3-hs4); hamU=(2*exp(-kl*L)./(2*pi*L)) *(N1^2*(giaithua(i1+j1)/giaithua(i1))).*(exp(-xi).*xi.^j1); hs21=q.^2-2*m.*(deltall+hh*wk-hh*wq); hs22=q.^2-2*m.*(deltall-hh*wk+hh*wq); hams2=hams2+q.*(hamU.^2).*(exi-hsa).^(3/2).*(hs21+hs22); Dm1=(kB.*T.*(1+sin(phi).^2).^2 +(kB.*T.*sin(phi)-tau.*omegac.*hsa.*cos(phi))).^2; 107 z Dm2=(hsa.*(1+sin(phi).^2).^2 +(kB.*T.*x.*cos(phi)-hsa.*sin(phi))).^2; Dm3=2*(kB.*T.*hsa.*((1+sin(phi).^2).^2)+(kB.*T.*x.*cos(phi) -hsa.*sin(phi)).*(kB.*T.*sin(phi)-tau.*omegac.*hsa.*cos(phi))); D1=(hsa.*(1-sin(phi).^2).*(hamci(x).^2-hamsi(x).^2) +kB.*T.*x.*(1+sin(phi).^2).*hamci(x).*hamsi(x)).*sin(x).*cos(x); D2=hsa.*(1-sin(phi).^2).*hamci(x).*hamsi(x).*(sin(x).^2-cos(x).^2); D3=kB.*T.*x.*(1+sin(phi).^2).*((hamci(x).*sin(x)).^2 +(hamsi(x).*cos(x)).^2); Dm11=(Dm1.*(x.*hamci(x)).^2+Dm2.*hamsi(x).^2 -Dm3.*x.*hamci(x).*hamsi(x)).*(sin(x).^2); Dm12=(Dm1.*(x.*hamsi(x)).^2+Dm2.*hamci(x).^2 +Dm3.*x.*hamci(x).*hamsi(x)).*(cos(x).^2); Dm13=(2*hamci(x).*hamsi(x).*(Dm1.*x.^2-Dm2) +Dm3.*x.*(hamci(x).^2-hamsi(x).^2)).*sin(x).*cos(x); end end end end end end ts=phiw*hh.*tau*(cs1.*hams1+cs2.*hams2).*(Dm1+Dm2+Dm3).*cos(phi); ms=2*m*(e^2).*(Dm11+Dm12+Dm13); amdt=-ts./ms; y= real(amdt); Chương trình Matlab tính tốn trường âm - điện – từ dây lượng tử hình trụ với hố parabol 5.1 Sự phụ thuộc trường âm - điện – từ vào tần số sóng âm ngoài, từ trường tham số dây lượng tử hình trụ hố cao vơ hạn wq=linspace(0.05*10^10,4*10^10,100); Bx1=1.20; Bx2=1.50; Bx3=1.80; By=4; r=15*10^-9; phi=60*pi/180; T0=4; y21=hamamdientuP2(r,phi,T0,Bx1,By,wq); T1=4; y22=hamamdientuP2(r,phi,T1,Bx2,By,wq); T1=4; y23=hamamdientuP2(r,phi,T1,Bx3,By,wq); figure(1); plot(wq,y21,'r',wq,y22,'b',wq,y23,'c'); 108 z xlabel('The frequency of external acoustic wave w_q (s^-^1)'); ylabel('The AME field (arb units)'); legend('Bx=1.3 T','Bx=1.6 T','Bx=1.8 T'); clear all; Bx=linspace(0.1*10^-1,1.2*10^-1,50); By1=1.52; By2=1.65; lx=20*10^-9; ly=30*10^-9; r=10*10^-9; phi=60*pi/180; T0=200; T1=250; y11=hamamdientuP(r,phi,T0,Bx,By1,lx,ly); y12=hamamdientuP(r,phi,T1,Bx,By2,lx,ly); figure(3); plot(Bx,y11,'r',Bx,y12,'b'); xlabel('Magnetic B_x (T)'); ylabel('The QAME field (arb units)'); Bx=linspace(0.2,2.5,50); By1=1.52; By2=1.70; lx=10*10^-9; ly=10*10^-9; r=10*10^-9; phi=80*pi/180; T0=4; T1=5; y11=hamamdientuP(r,phi,T0,Bx+1.25,By1-0.1,lx,ly); y12=hamamdientuP(r,phi,T1,Bx+1.15,By2-0.1,lx,ly); figure(4); plot(Bx,y11,'r',Bx,y12,'b'); xlabel('Magnetic B_x (T)'); ylabel('The QAME field (arb units)'); clear all; By=linspace(0.05,0.25,150); Bx1=0.392; Bx2=0.42; r=10*10^-9; lx=20*10^-9; ly=30*10^-9; phi=60*pi/180; T0=200; T1=250; y21=hamamdientuP(r,phi,T0,Bx1,By,lx,ly); y22=hamamdientuP(r,phi,T1,Bx2,By,lx,ly); figure(5); plot(By,y21,'r',By,y22,'b'); xlabel('Magnetic B_y (T)'); ylabel('The QAME field (arb units)'); By=linspace(0.2,2.5,150); Bx0=0.3; Bx1=0.4; Bx2=0.5; r=10*10^-9; lx=20*10^-9; ly=30*10^-9; phi=60*pi/180; T0=4; T1=5; y30=hamamdientuP(r,phi,T0,Bx0,By,lx,ly); y31=hamamdientuP(r,phi,T0,Bx1,By,lx,ly); y32=hamamdientuP(r,phi,T1,Bx2,By,lx,ly); figure(6); plot(By,y31,'r',By,y32,'b'); xlabel('Magnetic B_y (T)'); ylabel('The QAME field (arb units)'); 5.2 Hàm tính trường âm – điện – từ dây lượng tử hình trụ hố cao vô hạn function y=hamamdientuP(r,phi,T,Bx,By,lx,ly) e0=1.6*10^-19; e=2.07*e0; m0=9.1*10^(-31);m=0.067*m0; nm=2;n1m=2; N=1000; wq=2*10^10; wk=9*10^9; kb=1.38*10^(-23); 109 z L=15*10^-8; S=pi*(r.^2); phiw = 10^4; kapa = 13.5*e0; vs=5000; beta=1./(kb*T); ro=5320; hh=1.0544*10^(-34); q=wq./800; c=3*10^8; cr=800; cl=2000;ct=1800; sima1=(1-cr./cl).^(1/2); sima2=(1-cr./ct).^(1/2); kl=(q.^2-wq.^2./cl.^2).^(1/2); F=q.*((1+sima1.^2)./(2.*sima1)+(sima1./sima2-2).*(1+sima2.^2)./(2.*sima2)); tau = 10^-12; B=sqrt(Bx.^2+By.^2); ac=sqrt(c*hh./(e*B)); xi=(r.^2)./(2*ac.^2); Hx=Bx./(4*pi*10^-7); Hy=By./(4*pi*10^-7); omegax=e*Hx/(m*c);omegay=e*Hy/(m*c); omegax1=1./(4*m*lx.^2);omegay1=1./(4*m*ly.^2); omega1=sqrt(omegax1.^2+omegay.^2); omega2=sqrt(omegay1.^2+omegax.^2); omegac=sqrt(omegax.^2+omegay.^2); M=m*(1+(omegax./omegay1).^2+(omegay./omegax1).^2); cs1=e*pi*(kapa^2)*kb*T./(4*ro*vs*wk*L*S*phiw*(hh^4)); cs2=e*pi*(kapa^2)*vs*((2*pi*hh)^3)*(wq.^2)./(2*ro*F*S); hams1=0; hams2=0; amdt=0; x=1./(omegac*tau); exi=kb*T*x; for i1=1:nm for j1=1:n1m for i2=1:nm for j2=1:n1m hsa=hh*omega1*(i1+1/2)+hh*omega2*(j1+1/2); deltall=omega1*(i1-i2)+omega2*(j1-j2); hami=1; hamJ=1; hs1=(sqrt(deltall-hh*wk+hsa-exi)+sqrt(exi-hsa)).^3; hs2=(sqrt(deltall+hh*wk+hsa-exi)+sqrt(exi-hsa)).^3; hs3=(sqrt(deltall+hh*wk-hsa+exi)-sqrt(exi-hsa)).^3; hs4=(sqrt(deltall-hh*wk-hsa+exi)-sqrt(exi-hsa)).^3; hams1=hams1+(hami.^2)*(hamJ.^2).*(M.^2).*((exi-hsa).^(3/2)) *(hs1+hs2-hs3-hs4)/10^9; hamU=(2*exp(-kl*L)./(2*pi*L)).*(N^2*(giaithua(i1+j1)/giaithua(i1))) *(exp(-xi).*xi.^j1); hs21=q.^2-M.*(deltall+hh*wk-hh*wq); hs22=q.^2-M.*(deltall-hh*wk+hh*wq); 110 z hams2=hams2+q.*(hamU.^2).*(M.*(exi-hsa).^(3/2)).*(hs21+hs22); DQ1=omegax.*(cos(phi).^2).*(x.^4).*(omegax.*kb.*T+tau.*(omegay.^2) *hsa.*sin(phi)); DQ2=exi.*((omegay.*sin(phi)).^2)./omegac; DQ3=(x.^2).*(tau*exi.*omegax.*(omegay.^2)*(cos(phi).^2)*sin(phi)+ has.*((omegax.*cos(phi)).^2 -tau*(omegay.*sin(phi)).^2)); ts11=(DQ1.*(hamci(x).^2)-DQ2.*(x.*hamsi(x)).^2-x.*DQ3.*hamci(x) *hamsi(x)).*(cos(phi).^2); ts12=(DQ1.*(hamsi(x).^2)-DQ2.*(x.*hamci(x)).^2+x.*DQ3.*hamci(x) *hamsi(x)).*(sin(phi).^2); ts13=(2.*DQ1.*hamci(x).*hamsi(x)+2*(x.^2).*DQ2.*hamci(x) *hamsi(x)+x.*DQ3.*(hamci(x).^2-hamsi(x).^2)).*cos(phi).*sin(phi); ts=(hams1+hams2).*(ts11+ts12+ts13); DQM1=(x.^4).*((omegay.^4).*(tau.*hsa.*sin(phi)).^2)+((omegay.^2) *tau.*hsa.*cos(phi)-omegax.*kb.*T).^2; DQM2=(omegay.^4).*(tau.*x.*exi.*sin(phi)).^2+((omegay.^2) *tau.*x.*exi.*cos(phi)-omegax.*hsa).^2; DQM3=2*x.*(kb.*T.*hsa.*(omegay.*sin(phi)./omegac).^2+ (exi.*(omegay.^2).*(cos(phi)./omegac)-hsa.*omegax) *(tau.*hsa.*cos(phi).*omegay.^2-omegax.*kb.*T)); ms11=(DQM1.*(hamci(x).^2)+DQM2.*(x.*hamsi(x)).^2x.*DQM3.*hamci(x).*hamsi(x)).*(cos(phi).^2); ms12=(DQM1.*(hamsi(x).^2)+DQM2.*(x.*hamci(x)).^2+x.*DQM3 *hamci(x).*hamsi(x)).*(sin(phi).^2); ms13=(2.*DQM1.*hamci(x).*hamsi(x)-2*(x.^2).*DQM2.*hamci(x) *hamsi(x)+x.*DQM3.*(hamci(x).^2-hamsi(x).^2)).*cos(phi).*sin(phi); ms=ms11+ms12+ms13; end end end end amdt=(phiw*hh*omegax.*tau.*sin(2*phi)./(2*M*(e*sin(phi)).^2)) *(real(ts)./(ms)); 111 z y= real(amdt); % Hàm si function si=hamsi(x) si1=-pi/2; for k=1:50 si1=si1+((-1)^(k+1))*(x.^(2*k-1))/((2*k-1)*giaithua(2*k-1)); end si=si1; % Hàm ci function ci=hamci(x) ci1=-log(x); for k=1:50 ci1=ci1+(-1)^(k)*(x.^(2*k))/((2*k)*giaithua(2*k)); end ci=ci1; 112 z z ... nghiên cứu Vì vậy, luận án nghiên cứu lý thuyết lượng tử hiệu ứng âm - điện - từ cho hệ bán dẫn chiều lựa chọn tiêu đề luận án ? ?Hiệu ứng âm - điện - từ hệ bán dẫn chiều? ?? Trong luận án này, lần lý... âm – điện – từ xuất hiện, mạch hở xuất trường âm - điện - từ Hiệu ứng âm – điện – từ tương tự hiệu ứng Hall bán dẫn mà dịng âm đóng vai trị dòng điện Bản chất hiệu ứng âm – điện – từ tồn dịng... hiệu ứng âm – điện – từ mơ tả Hình 1.1 z Hình 1.1 Sơ đồ hiệu ứng âm - điện - từ Hiệu ứng âm - điện - từ tương tự hiệu ứng Hall bán dẫn, dòng   âm  giữ vai trò dòng điện j Bản chất hiệu ứng âm

Ngày đăng: 08/03/2023, 17:40

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w