Free LATEX (Đề thi có 5 trang) BÀI TẬP TOÁN THPT Thời gian làm bài 90 phút Mã đề thi 1 Câu 1 [1] Tính lim x→−∞ 4x + 1 x + 1 bằng? A −4 B 2 C −1 D 4 Câu 2 Tính giới hạn lim x→+∞ 2x + 1 x + 1 A −1 B 1 C[.]
Free LATEX BÀI TẬP TỐN THPT (Đề thi có trang) Thời gian làm bài: 90 phút Mã đề thi 4x + bằng? Câu [1] Tính lim x→−∞ x + A −4 B 2x + Câu Tính giới hạn lim x→+∞ x + A −1 B C −1 D C D x+2 bằng? x→2 x A B C D x − 12x + 35 Câu Tính lim x→5 25 − 5x 2 A − B −∞ C D +∞ 5 Câu Giả sử ta có lim f (x) = a lim f (x) = b Trong mệnh đề sau, mệnh đề sai? x→+∞ x→+∞ f (x) a A lim = B lim [ f (x) − g(x)] = a − b x→+∞ g(x) x→+∞ b C lim [ f (x) + g(x)] = a + b D lim [ f (x)g(x)] = ab Câu Tính lim x→+∞ x→+∞ Câu Phát biểu phát biểu sau đúng? A Nếu hàm số có đạo hàm x0 hàm số liên tục −x0 B Nếu hàm số có đạo hàm x0 hàm số liên tục điểm C Nếu hàm số có đạo hàm trái x0 hàm số liên tục điểm D Nếu hàm số có đạo hàm phải x0 hàm số liên tục điểm Câu Giá trị lim (3x2 − 2x + 1) x→1 A B x2 − 5x + Câu Tính giới hạn lim x→2 x−2 A B x+1 Câu Tính lim x→−∞ 6x − A B 2n + Câu 10 Tính giới hạn lim 3n + 2 A B C D +∞ C D −1 C D C D Câu 11 [12214d] Với giá trị m phương trình |x−2| = m − có nghiệm A < m ≤ B ≤ m ≤ C ≤ m ≤ D < m ≤ log(mx) Câu 12 [1226d] Tìm tham số thực m để phương trình = có nghiệm thực log(x + 1) A m < B m < ∨ m = C m < ∨ m > D m ≤ Câu 13 [12221d] Tính tổng tất nghiệm phương trình x+1 = log2 (2 x +3)−log2 (2020−21−x ) A log2 2020 B log2 13 C 13 D 2020 Trang 1/5 Mã đề Câu 14 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D √ √ − 3m + = có nghiệm C ≤ m ≤ D m ≥ Câu 16 [12213d] Có giá trị nguyên m để phương trình |x−1| = 3m − có nghiệm nhất? A B C D √ Câu 17 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 B (1; 2) C ;3 D [3; 4) A 2; 2 Câu 15 [12215d] Tìm m để phương trình x+ 3 B ≤ m ≤ A < m ≤ 4 1−x2 − 4.2 x+ 1−x2 Câu 18 [12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 19 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x+1 y y A xy = e − B xy = −e − C xy0 = −ey + D xy0 = ey + log 2x Câu 20 [1229d] Đạo hàm hàm số y = x2 1 − log 2x − ln 2x − ln 2x B y0 = C y0 = D y0 = A y0 = 3 x ln 10 2x ln 10 x 2x3 ln 10 Câu 21 Dãy số sau có giới hạn khác 0? sin n n+1 A B C √ D n n n n ! 3n + 2 + a − 4a = Tổng phần tử Câu 22 Gọi S tập hợp tham số nguyên a thỏa mãn lim n+2 S A B C D Câu 23 Trong khẳng định có khẳng định đúng? (I) lim nk = +∞ với k nguyên dương (II) lim qn = +∞ |q| < (III) lim qn = +∞ |q| > A B Câu 24 [3-1132d] Cho dãy số (un ) với un = A lim un = C lim un = C D + + ··· + n Mệnh đề sau đúng? n2 + B Dãy số un khơng có giới hạn n → +∞ D lim un = Câu 25 Dãy số sau có giới hạn 0? − 2n n2 − A un = B u = n 5n + n2 5n − 3n2 n−1 Câu 26 Tính lim n +2 A B C un = C n2 − 3n n2 D un = n2 + n + (n + 1)2 D Trang 2/5 Mã đề Câu 27 Tính lim A 7n2 − 2n3 + 3n3 + 2n2 + B C 1 Câu 28 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n B C +∞ A 2 D - ! D Câu 29 Phát biểu sau sai? A lim k = với k > n C lim un = c (Với un = c số) B lim qn = với |q| > 1 D lim √ = n un Câu 30 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A +∞ B −∞ C D Câu 31 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách hai đường thẳng BB0 AC 1 ab ab A √ B √ C √ D a + b2 a2 + b2 a2 + b2 a2 + b2 [ = 60◦ , S O Câu 32 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc với mặt đáy S O = a √ Khoảng cách từ A đến (S√BC) √ √ a 57 2a 57 a 57 B C D A a 57 19 19 17 Câu 33 [2] Cho hình chóp tứ giác S ABCD có tất cạnh a Khoảng cách từ D đến đường thẳng S B √ a a a B C a D A 2 Câu 34 [2] Cho chóp S ABCD có đáy hình vng tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) √ √ √ √ a A a B a C D 2a Câu 35 [3] Cho khối chóp S ABC có đáy tam giác vuông B, BA = a, BC = 2a, S A = 2a, biết S A ⊥ (ABC) Gọi H, K hình chiếu A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB) a 8a 5a 2a A B C D 9 9 Câu 36 [2] Cho hai mặt phẳng (P) (Q) vuông góc với cắt theo giao tuyến ∆ Lấy A, B thuộc ∆ đặt AB = a Lấy C D thuộc (P) (Q) cho AC BD vng góc với ∆ AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) √ √ √ √ a a A 2a B a C D √ Câu 37 [2] Cho hình chóp S ABCD có đáy ABCD hình chữ nhật với AB = a BC = a Cạnh bên S A vng góc mặt đáy góc cạnh bên S C đáy 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) √ √ √ 3a 38 3a 3a 58 a 38 A B C D 29 29 29 29 Trang 3/5 Mã đề d = 30◦ , biết S BC tam giác Câu 38 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 A B C D 26 16 13 Câu 39 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC A0 ab 1 ab B D √ C √ A √ a +b a2 + b2 a2 + b2 a2 + b2 Câu 40 [3] Cho hình lập phương ABCD.A0 B0C D0 có cạnh a Khoảng cách hai mặt phẳng (AB0C) (A0C D) √ √ √ √ 2a a a A a B C D 2 Câu 41 Cho Z hai hàm yZ= f (x), y = g(x) có đạo hàm R Phát biểu sau đúng? f (x)dx = A Nếu Z B Nếu Z g0 (x)dx f (x) = g(x), ∀x ∈ R f (x)dx = Z f (x)dx = Z g(x)dx f (x) , g(x), ∀x ∈ R g(x)dx f (x) = g(x), ∀x ∈ R Z Z D Nếu f (x) = g(x) + 1, ∀x ∈ R f (x)dx = g0 (x)dx C Nếu Câu 42 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Chỉ có (I) B Cả hai C Chỉ có (II) D Cả hai sai Câu 43 Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Khơng có câu D Câu (III) sai sai Câu 44 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a;Zb) C Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C D Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) Câu 45 Z [1233d-2] Mệnh đề sau sai? A f (x)dx = f (x) + C, với f (x) có đạo hàm R Trang 4/5 Mã đề Z Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x) liên tục R Z C k f (x)dx = k f (x)dx, với k ∈ R, f (x) liên tục R Z Z Z D [ f (x) − g(x)]dx = f (x)dx − g(x)dx, với f (x), g(x) liên tục R B Z Câu 46 Z Các khẳng định sau Z sai? f (x)dx = F(x) + C ⇒ A Z C f (x)dx = F(x) +C ⇒ f (t)dt = F(t) + C B Z f (u)dx = F(u) +C D Z Z !0 f (x)dx = f (x) Z k f (x)dx = k f (x)dx, k số Câu 47 Xét hai câu sau Z Z Z (I) ( f (x) + g(x))dx = f (x)dx + g(x)dx = F(x) + G(x) + C, F(x), G(x) nguyên hàm tương ứng hàm số f (x), g(x) (II) Mỗi nguyên hàm a f (x) tích a với nguyên hàm f (x) Trong hai câu A Chỉ có (II) B Cả hai câu C Chỉ có (I) D Cả hai câu sai Câu 48 Giả sử F(x) nguyên hàm hàm số f (x) khoảng (a; b) Giả sử G(x) nguyên hàm f (x) khoảng (a; b) Khi A G(x) = F(x) − C khoảng (a; b), với C số B F(x) = G(x) khoảng (a; b) C Cả ba câu sai D F(x) = G(x) + C với x thuộc giao điểm hai miền xác định, C số Câu 49 f (x), g(x) liên đề sai? Z Z Cho hàm số Z Z tục R Trong cácZmệnh đề sau, mệnh Z A f (x)g(x)dx = f (x)dx g(x)dx B ( f (x) − g(x))dx = f (x)dx − g(x)dx Z Z Z Z Z C k f (x)dx = f f (x)dx, k ∈ R, k , D ( f (x) + g(x))dx = f (x)dx + g(x)dx Câu 50 Hàm số f có nguyên hàm K A f (x) có giá trị lớn K C f (x) xác định K B f (x) liên tục K D f (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C A C C C C 12 13 B 14 A 15 B 16 D B D 24 A 26 27 D B C C 32 33 C 34 A B C D 30 C 37 C 28 31 36 C 38 C 40 39 A 41 C 42 43 C 44 45 C 46 47 C 22 25 A 35 B 20 A 21 29 B 18 C 19 A 23 D 10 A 11 A 17 B D C B C 48 A B 49 A 50 B ... f (x) có giá trị nhỏ K - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 D C A C C C C 12 13 B 14 A 15 B 16 D B D 24 A 26 27 D B C C 32 33 C 34... nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (I) sai C Không có câu D Câu (III) sai sai Câu 44 !0 sau sai? Z Mệnh đề A f (x)dx = f (x) B F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x),... liên tục (a; b) có nguyên hàm (a; b) Câu 45 Z [1233d-2] Mệnh đề sau sai? A f (x)dx = f (x) + C, với f (x) có đạo hàm R Trang 4/5 Mã đề Z Z Z [ f (x) + g(x)]dx = f (x)dx + g(x)dx, với f (x), g(x)